Oracle9i Database Fundamentals II

Instance recovery

Function of the Archive Background process

The ARCn process I an optional process. When enabled, it archives the redo log files to designated storage areas. This process has a great significance in backup, restoration, and recovery of a database set to Archivelog mode, where databases are operational 24 hours a day and 7 days a week.

Archive d log files 

When a database is set to archivelog mode, the LGWR process waits for the online redo log files t be archived (either manually or through ARCn) before it can be reused. 

If an online redo log file is corrupt, another member from the same group is used. Archived redo logs are beneficial in the backup and recovery process because:

· A database backup, combined with redo log files, guarantees that all committed data can be recovered to the pint of failure.

· Valid database backups can be taken while database is online.

Archiving considerations

The choice to enable archiving depends on availability and reliability requirements of each database. Archived logs can be stored in more than one location (duplexing of multiple destinations), because they are vital for recovery. For production databases, it is recommended that you use archive log feature with multiple destinations. 

Database synchronization

An Oracle database cannot be opened unless all datafiles, redo logs, and control files are synchronized. In this case recovery is required. 

Database file synchronization

· For the database to be open, all datafiles must have the same checkpoint number, unless they are offline or part of read-only tablespace.

· Synchronization of all Oracle files is based on the current redo log checkpoint and sequence numbers.

· Archived and online redo log files recover committed transactions and roll back uncommitted transactions to synchronize the database files.

· Archived and online redo log files are automatically requested by Oracle server during the recovery phase. Make sure logs exists in the requested location.

Instance recovery phases

· The datafiles are not synchronized

· During the cache recovery or roll forward phase, all the changes recorded in the redo log files since the last checkpoint are applied to datafiles. 

· The datafiles now contain committed and perhaps uncommitted changes. The database is opened. 

· During the transaction recovery or rollback phase, any changes that were not actually committed are rolled back.

· The datafiles now contain only committed changes to the database.

Tuning Instance recovery performance

Instance and crash recovery are the automatic application of redo log records to Oracle data blocks after an instance failure.

The principal means of balancing the duration of instance recovery and daily performance is by influencing how aggressively Oracle advances the checkpoint. You can minimize the number of blocks processed during instance recovery by keeping the checkpoint only a few blocks behind the recent redo log record. However, this will increase performance overhead for normal operations due to frequent checkpointing.

Fast start fault recovery functionality can be used to control instance recovery. This reduces the roll forward time by making it bounded and predictable, and also eliminates the time required to perform rollback. The foundation of fast-start fault recovery is the fast-start checkpointing architecture. A target time to complete the roll forward phase of recovery is specified by means of an initialization parameter.

The size of the redo log file directly influences checkpointing. The smaller the size of the smallest log, the more aggressively Oracle writes dirty buffers to disk to ensure that the position of the checkpoint has advanced to the current log, before that log completely fills, so that it can be reused.

Parameters that affect recovery

FAST_START_MTTR_TARGET – expected MTTR specified in seconds

LOG_CHECKPOINT_TIMEOUT – amount of time that has passed since the incremental checkpoint at the position where the last write to the redo log occurred.

LOG_CHECKPOINT_INTERVAL – number of redo log file blocks that can exist between an incremental checkpoint and the last block written to the redo log.

It is recommended that you use only FAST_START_MTTR_TARGET parameter, instead of a combination of all three. It provides the most precise control over the duration of recovery and eliminates the need for specifying LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_TIMEOUT. The dynamic view V$INSTANCE_RECOVERY provides the current recovery parameter settings.

RECOVERY_ESTIMATED_IOS – contains the number of dirty buffers in the buffer cache (NULL in Standard Edition). 

ACTUAL_REDO_BLKS – current number of redo blocks required to be read for recovery

TARGET_REDO_BLKS – Goal for the maximum number of redo blocks to be read during recovery.

LOG_FILE_SIZE_REDO_BLKS – Number of redo blocks to be processed during recovery corresponding to satisfy 90% of the size of the smallest log file

LOG_CHCKPT_TIMEOUT_REDO_BLKS - Number of redo blocks to be processed during recovery to satisfy LOG_CHECKPOINT_TIMEOUT

LOG_CHCKPT_INTERVAL_REDO_BLKS - Number of redo blocks to be processed during recovery to satisfy LOG_CHECKPOINT_INTERVAL

TARGET_MTTR – effective time to recover (MTTR) target in seconds. 

ESTIMATED _MTTR – the current estimated mean time to recover (MTTR) in the number of seconds.

Tuning the phases of instance recovery

You can use parameters to control the rolling forward and rolling back phases of instance recovery to increase the efficiency of recovery. The total recovery time required is the sum of the time required to roll forward and roll back.

· Tuning the rolling forward phase

The RECOVERY_PARALLELISM initialization parameter is used to specify the number of concurrent process for instance recovery operations. Using multiple processes in effect provides parallel block recovery. Different processes are allocated to different blocks during the roll forward phase.

· Tuning the roll back phase

Fast-start-on-demand rollback is an automatic feature which allows new transactions to begin immediately after the roll forward phase of recovery compeltes. If a user attempts to access row that is locked by a dead transaction, only the changes needed to complete the transaction are rolled back. The roll back is on demand.

· Fast-Start on-demand rollback

A user transaction initiates rollback on only the block the transaction is attempting to access. The remainder of the blocks are recovered in the background by SMON, potentially in parallel. The advantage is that a transaction does not have to wait until all work of a long transaction is rolled back.

- Fast-start parallel rollback

Fast start parallel rollback enables SMON to act as a coordinator and use multiple server processes to complete the rollback operation. Parallel rollback is automatically started when SMON determines that the dead transaction has generated a large number of rollback blocks. It is mainly useful in a system that has long-running transactions, particularly parallel INSERT, UPDATE or DELETE operations.

Controlling fast start rollback

FAST_START_PARALLEL_ROLLBACK parameter

	Value
	Maximum parallel recovery servers

	FALSE
	None

	LOW
	2 * CPU_COUNT

	HIGH
	4 * CPU_COUNT


Monitoring parallel rollback

V$FAST_START_SERVERS

V$FAST_START_TRANSACTIONS

Use the following query to monitor the use of parallel query slaves for fat start parallele rollback:

SQL> SELECT * FRON v$fast_start_servers;

Use the following query to verify the status of the fast start-rollback:

SQL> SELECT usn, state, undoblksdone, undoblkstotal

FROM v$fast_start_transactions;

The USN column specifies which undo segment the rollback segment the rollback is taking place from while the UNDOBLKSDONE and UNDOBLKSTOTAL indicate the amount of work done and the total amount of work respectively.

ENABLING DATABASE AUTOMATIC ARCHIVING

Redo log history 

All transactions are recorded in the online redo log files. This allows for automatic recovery of transactions in the event of a database failure.

If the database is configured for noarchivelog mode. No redo history is saved to archived log files, and recovery operations are limited to and a loss of transaction work may occur. This is the result of the automatic recycling of log files, where older log files are overwritten and only the most recent part of the transaction history is available for recovery. 

You can configure database  in Archivelog mode, so that a history of redo information is maintained in archived files. The archived redo log files are also useful in media recovery. The database can be created in noarchive mode, but it is configured in noarchivelog by default.

Setting the database in archivelog mode does not enable the ARCn..

Automatic and manual archiving

Before deciding on which archiving mode to enable (auto or manual) you must set the database in Archivelog mode.

The database should be shut down cleanly. 

Specifying multiple ARCn processes

LOG_ARCHIVE_MAX_PROCESSES parameter

Parallel data definition language (DDL) and parallel data manipulation language (DML) operations may generate a large number of redo log files. A single ARC0 process to archive these redo log files might not be able to keep up. Oracle starts additional processes as needed. However, if you wish to avoid the run time overhead of invoking the additional processes, you can specify the number of processes to be started at instance startup.

You can specify up to ten ARCn processes by using the LOG_ARCHIVE_MAX_PROCESSES parameter. When LOG_ARCHIVE_START is set to TRUE, an Oracle instance starts up with LOG_ARCHIVE_MAX_PROCESSES number . You can kill archive processes at anytime during instance life.

Dynamic number of ARCn processes

During a period of heavy transaction load or activity, you can temporarily start additional archive processes to eliminate the archiving bottlenecks. After the transaction activity returns  to a normal level, you can stop some of the archiving processes.

SQL> ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES=3;

You can also stop the additional archive process:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES=2;

Enabling automatic archiving at instance startup

If the database is in archivelog mode, then archiver processes can be started every time the database instance is started by setting the parameter:

LOG_ARCHIVE_START=Boolean

Where boolean TRUE automatically starts n ARCn processes upon startup, where n is determined by the value of LOG_ARCHIVE_MAX_PROCESSES.

FALSE inhibits ARCn from starting upon instance startup.

Enabling automatic archiving after instance startup

SQL> ARCHIVE LOG LIST;

SQL> ALTER SYSTEM ARCHIVE LOG START TO ‘C:\backup\arch’;

The ARCn processes are started as redo logs are filled.

Disabling automatic archiving

SQL. ALTER SYSTEM ARCHIVE LOG STOP;

Ensure that automatic archiving is disabled upon instance startup by editing init.ora file and setting the parameter LOG_ARCHIVE_START=FALSE;

Note: Stopping ARCn processes does not set the database in NOARCHIVELOG mode. When all groups of redo logs are used and not archived, the database hangs and if it is in NOARCHIVELOG mode.

Manual archiving of redo log files

SQL> SELECT sequence#, archived, status

FROM v$log;

SQL> ALTER SYSTEM ARCHIVELOG SEQUENCE# 052;

Specifying the archive log destination

LOG_ARCHIVE_DEST_n parameter

The LOG_ARCHIVE_DEST_n parameter (where n=1,2,3,4,5..10) define up to ten archive log destinations. This parameter is valid only if you installed OED. In Oracle9i they only define up to five destinations.

LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters

An alternative means of defining multiple archiving locations is to specify a primary location by using LOG_ARCHIVE_DEST parameter and to use the LOG_ARCHIVE_DUPLEX_DEST parameter to define a backup destination.

LOG_ARCHIVE_FORMAT parameter

The LOG_ARCHIVE_FORMAT is used to include the log sequence number and the thread number as part of the file name.

Specifying multiple archive locations

The LOG_ARCHIVE_DEST_n parameters are dynamic parameters that can be modified ate the system or session level. A maximum of ten destinations can be specified by using a suffix ranging from 1 to 10.

The destination can be either a local file system location, defined by the keyword LOCATION (cannot be NFS mounted directory) or Oracle Net alias for remote destination, specified by the SERVICE keyword. The service name specified by using the SERVICE keyword. Only one archive destination per remote database can be specified. 

When using LOG_ARCHIVE_DEST_n parameters, a destination can be either designated as either mandatory or optional as shown below:

· MANDATORY implies that archiving complete successfully before an online redo log file can be overwritten.

· OPTIONAL implies that the online redo log file can be reused even if it has not been archived to this destination. This is the default.

REOPEN attribute

The REOPEN attribute defines whether archiving to a destination must be re-attempted in case of failure. If a number is specified along with the key word REOPEN, as in REOPEN=600, the archiver attempts to write to this destination after the specified number of seconds following the failure. The default is 300 seconds. 

If REOPEN is not specified, errors at optional destination destinations are recorded and ignored. No further redo logs will be sent to these destinations. Errors at mandatory destinations will prevent reuse of the online redo log until the archiving is successful.  The status of an archive destination is set to ERROR whenever archiving is unsuccessful.

An online redo log group can be reused only if:

· Archiving has been done to all mandatory locations

· The number of local locations archived is greater than or equal to LOG_ARCHIVE_MIN_SUCCEED_DEST parameter.

Controlling archiving to a destination

An archival destination may be disabled by using the dynamic initialization parameter LOG_ARCHIVE_DEST_STATE_n

LOG_ARCHIVE_DEST_STATE_2=DEFER

Or

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_3=DEFER

Or enabled back:

LOG_ARCHIVE_DEST_STATE_2=ENABLE

Or

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_3=ENABLE

Specifying LOG_ARCHIVE_FORMAT

LOG_ARCHIVE_FORMAT=arch%s.arc

Where extension should include the variables %s or %S for the log sequence number. The default is OS specific. 

File name options

· %s or %S: includes the log sequence number as part of the file name

· %t or %T: includes the thread number as part of the filename

· Using %S causes the value to be a fixed length padded to the left with zeros.

Obtaining log information

Dynamic views

· V$ARCHIVED_LOGS – archived log information from the control file. 

· V$ARCHIVE_DEST – for the current instance, describes all archive log destinations, the current value, mode and status.

SQL> SELECT destination, binding, target, status

FROM v$archive_dest;

The status of INACTIVE indicates that this destination is not defined, VALID – the destination is enabled and error-free. 

· V$LOG_HISTORY – contains log file information from the control file.

· V$DATABASE – current state of archiving.

· V$ARCHIVE_PROCESSES – provides information about the state of the various ARCH processes for the instance.

SQL> SELECT * FROM V$ARCHIVE_PROCESSES;

A status of ACTIVE means the process is up and running, a currently archiving process is shown as BUSY. 

Archive log information

The ARCHIVE LOG LIST provides all log information:

SQL> ARCHIVE LOG LIST;

RMAN Recovery

Recovery Manager (RMAN) is an Oracle utility that helps you manage the backup, restore, and recovery operations. RMAN has a powerful command language that is independent of the OS. 

RMAN has a command-line interface. OEM also provides a GUI for RMAN. RMAN can be used on databases version 8 and higher.

RMAN provides several features not available when you make user-managed backups with OS command. 

· You can store frequently executed operations as scripts in the database.

· Using incremental block-level backup feature you can limit backup size to only those blocks that have changed since the previous backup. This also helps to reduce the time it takes to perform recovery operations in Archivelog mode.

· You can use RMAN to manage the size of the backup pieces and save time by parallelizing the backup operation.

· RMAN operations can be integrated with the scheduling of the OS to automate backup operations.

· You can detect block corruption. The information relating to the block corruption that is detected during backup can be obtained by using some dynamic views – V$BACKUP_CORRUPTION and V$COPY_CORRUPTION.

· RMAN provides performance enhancements such as:

· Automatic parallelization of backup, restore and recovery

· No generation of extra redo during online backups

· Backups are restricted to limit reads per file, per second, to avoid interfering with OLTP network

· Prevention of flooding of any file with reads and writes while still keeping a tape drive streaming, using multiplexing.

· RMAN has a media management API to work seamlessly with third party media management tools interfacing with storage devices providing increased speed and reliability.

RMAN components

Recovery manager executable – RMAN interprets user commands and appropriately invokes server sessions to perform the desired tasks.

Server sessions – the server processes (UNIX) or services (NT) invoked by RMAN connect to the target database to perform the backup, restore and recovery functions through a PL/SQL interface.

Target database – the database for which backup and recovery operations are being performed using RMAN is called the target database.

RMAN repository – the data used by RMAN for backup, restore and recovery operations is referred to as RMAN metadata. It is stored in the control file of the target database and in the optional recovery catalog database.

Channel – to perform backup and recovery operations, RMAN requires a link to the target database. This link is referred to as a channel. 

Media management library – MML is used by RMAN when writing or reading from tapes. 

RMAN repository – using the control file as a sole RMAN repository

RMAN stores information about the target database and its backup and recovery operations in the RMAN repository. The target database control file can be used as the exclusive storage location for this information. The amount of information stored can increase depending on the frequency of backup, the number of archived redo log files that are generated, and the retention period for RMAN records.

Setting CONTROL_FILE_RECORD_KEEP_TIME

The CONTROL_FILE_RECORD_KEEP_TIME parameter specifies the minimum number of days RMAN information id stored in the control file before being overwritten. A low value results in information being overwritten too frequently, thus minimizing control file growth. If a recovery catalog is used, a lower value should be chosen. The default is 7 days.

If the size of the control file is too small to keep all the information for the specified by CONTROL_FILE_RECORD_KEEP_TIME, then the control file grows. 

Before the control file grows, the following happens:

1. Free space in the control file is used

2. Entries older than CONTROL_FILE_RECORD_KEEP_TIME are overwritten.

3. If no more space is available, the control file grows as needed until reaching OS limit.

Channel allocation

A channel represents one stream of data to a device type. A channel must be allocated before you execute backup and recovery commands. Each allocated channel establishes a connection from the RMAN executable to a target or auxiliary database instance by starting a server session on the instance. Only one RMAN session communicates with the allocated server sessions.

Each channel usually corresponds to one output device, unless your MML is capable of hardware multiplexing.

You can allocate channels manually or preconfigure channels for use in all RMAN sessions using automatic channel allocations.

Manual channel allocation

The ALLOCTE CHANNEL command with a RUN and ALLOCATE CHANNEL FOR MAINTENANCE command is used at RMAN prompt are used to allocate a channel manually. Manual channel allocation overrides automatic allocation. 

Automatic channel allocation

In Oracle9i, you can preconfigure channels for use in all RMAN sessions using automatic channel allocation.

RMAN provides a preconfigured DISK channel that you can use for backups and copies to disk. In addition, you can configure a set of persistent, automatic channels. You specify automatic channels to disk or tape using the CONFIGURE CHANNEL command.

Manually allocating a channel 

Recovery Manager uses the channel process to communicate between the Oracle server and the OS.

· An Oracle server process for the target database is created for every channel allocated. Every BACKUP, RECOVER, COPY and RESTORE command using RMAN requires at least one channel. 

· The number of channels allocated will be the maximum degree of parallelization that is used during backup, restore or recovery.

· The type of media desired determines the type of channel allocated. Query the V$BACKUP_DEVICE view to determine supported device types.

· You can impose limits for the COPY and BACKUP commands by specifying parameters in the ALLOCATE CHANNEL command: 

· - Read rate: limits number of buffers read per second, per file  to reduce online performance through excessive disk I/O. ALLOCATE CHANNEL … RATE=integer

· Kbytes: limits backup piece file size created by a channel. This is useful there are maximum file sizes for an operating system or device type. ALLOCATE CHANNEL … MAXPIECEISZE = integer

· MAXOPENFILES: limits the number of concurrently open files for a large backup (default 16). This prevents too many backups from being open. 

· ALLOCATE CHANNEL … MAXOPENFIL=integer (ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE disk; maintenance means a file will be deleted (no backup or copy).

· RMAN> {

· ALLOCATE CHANNEL d1 DEVICE TYPE DISK

· FORMAT = ‘’/db01/backup/%U’;

· BACKUP DATAFILE ‘/…/u03/users01.dbf’;}

Automatic channel allocation

You can save persistent configuration information such as channel parameters, parallelism, and the default device type in the RMAN repository. You can configure automatic channels for use in backup, restore, recovery and maintenance jobs.

When a channel is automatically allocated by RMAN, its name is in format ora_devicetype_n (ora_sbt_tape_n or ora_disk_n).

You can override automatic channels by using ALLOCATE CHANNEL command. To allocate channels manually. The automatic channel feature is mutually exclusive with the manual channel feature: RMAN one or the other for every job.

By default RMAN has preconfigured a disk channel so that you can backup to disk without doing any manual configuration. 

Media management

To use tape storage for your database backups, RMAN requires a media manager. A media manager is a utility that loads, labels and unloads sequential media such as tape drives. Note that the Oracle server does not need to connect to the media management library software when backs up to disk.

1. Install and configure the media management software on the target host or production network. No RMAN integration is required at this point. 

2. Ensure that you can make non-RMAN backups of OS files on the target database host. This step makes later troubleshooting much easier. 

3. Obtain and install the third-party media management module for integration with the Oracle server. This module must contain the library that Oracle loads when accessing the media manager.

Backup and restore operations using RMAN

RUN {

# Allocating a channel of type ‘sbt_tape’ for serial device


ALLOCATE CHANNEL ch1 DEVICE TYPE ‘sbt_tape’;


BACKUP DATAFILE 3;

}

When you restore a file, the following occur.

1. The Oracle server requests the restore of a particular file. 

2. The media manager identifies the tape containing the file and reads the tape.

3. The media manager passes the information back to the Oracle server session.

4. The Oracle server writes the file to disk.

Types of database connections with RMAN

1. Target database – you are connected to the target database with the SYSDBA privileges.

2. Recovery catalog database – this is the optional database which is configured for the RMAN repository. 

3. Auxiliary database – created using the RMAN DUPLICATE command. Or it may be a temporary database using used during tablespace point-in-time recovery (TSPITR). A standby database is a copy of production database that can be used for disaster recovery.

Connecting to the target database without a catalog

$RMAN target sys/change_on_install@db01

After you connect the following events occur:

1. User process is created in recovery manager

2. The user process creates 2 Oracle server processes: one default process connected to the target database for executing SQL commands, resynchronizing the control file, and recovery roll forward; and one polling process connected to the target database to locate remote procedure call (RPC) completions (only one per instance).

3. Backup and recovery information is retrieved from the control file.

RMAN modes

Recovery manager operates as a command line interpreter (CLI) with its own command language. There are two modes – interactive and batch.

Interactive mode

To run RMAN in interactive mode: $ RMAN target sys/pwd@db01

RMAN> BACKUP DATABASE;

Batch mode

You can type RMAN commands into a file, and then run the command file by specifying its name on the command line.

$ RMAN target / @tbsbk.rcv log tbs.log

RMAN commands

RMAN has two basic types of commands: stand-alone and job commands.

Standalone commands are executed in RMAN prompt and are generally self contained>

CHANGE

CONNECT

CREATE CATALOG

RESYNC CATALOG

CREATE SCRIPT, DELETE SCRIPT, REPLACE SCRIPT

The job commands are usually grouped and RMAN executes job commands inside of a run command block sequentially. If a command within a block fails, RMAN ceases processing – no further commands within the block are executed.

RMAN> REPORT SCHEMA;

RMAN configuration settings

RMAN is pre-set with default configuration settings which apply to all RMAN sessions. You can use the CONFIGURE command. 

RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT ‘/db01/BACKUP/%U;

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;

RMAN> CONFIGURE RETENTION POLICY TO REDUNDANCY 2;

RMAN> REPORT OBSOLETE;

RMAN> DELETE OBSOLETE;

Configure duplexed backup sets:

RMAN> CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 2;

Configure backup optimization:

RMAN> CONFIGURE BACKUP OPTIMIZATION ON;

Use CLEAR option to return to the default value:

RMAN> CONFIGURE RETENTION POLICY CLEAR;

RMAN> CONFIGURE CHANNEL DEVICE TYPE sbt CLEAR;

The SHOW command

The SHOW command is used to display persistent configuration settings specified with the CONFIGURE command.

RMAN> SHOW ALL;

The LIST command

The LIST command is used to produce a detailed report listing all information for the following:

· Backup sets that contain a backup of a specified list of data files

· Copies of a specified list of data files

List of all backups of all files in the database:

RMAN> LIST BACKUP OF DATABASE;

List backup sets containing the users01.dbf datafile:

RMAN> LIST BACKUP OF DATAFILE

“/db01/ORADATA/u03/users01.dbf”;

List all copies of datafiles in the SYSTEM tablespace:

RMAN> LIST COPY OF TABLESPACE “SYSTEM”;

The REPORT command

Produces a detailed analysis of the recovery catalog

Produces reports to answer:

· Which files need a backup?

· Which backups can be deleted?

· Which files are unrecoverable?

Examples:

What is the structure of the database?

RMAN> REPORT SCHEMA;

Which files need to be backed up?

RMAN> REPORT NEED BACKUP [INCREMENTAL3] [DAYS 3] [REDUNDANCY 3];

Which backups can be deleted?

RMAN> REPORT OBSOLETE:

Which files are not recoverable because of unrecoverable operations?

RMAN> REPORT UNRECOVERABLE …;

Recovery manager packages

DBMS_RCVCAT and DBMS_RCVMAN

These are internal undocumented packages created by CREATE CATALOG command. DBMS_RCVMAN is created in the target database by the scripts DBMSRMAN.sql and prvtmns.plb which are called by catproc.sql.

DBMS_RCVCAT is used by RMAN to maintain information in the recovery catalog, and the DBMS_RCVMAN queries the control file or recovery catalog.

DBMS_BACKUP_RESTORE package

This package is created by the dbmsbkrs.sql and prvtbkrs.plb scripts called by catproc.sql. It is used to interface with Oracle and OS to create, restore and recover backups of datafiles and archived redo log files.

RMAN usage considerations 

· Shared resources on the system. Most of RMAN work is performed through Oracle server processes. The operation can also be performed in parallel to increase throughput. This implies the PROCESSES parameter must be sufficiently high. From OS standpoint, this means that shared memory and semaphores are adequately set.

· Set of users performing privileged operations. Accordingly, you can set the user’s accounts with the necessary privileges at the OS level and at the Oracle database.

· Remote operations. You need to use a password file to connect to the target database over Oracle Net to shutdown/startup database. You may have to set up a password file.

· You should ensure there is a strategy to backup password file as well. 

· Globalization environment variables – before invoking RMAN, set the NLS_DATE_FORMAT and NLS_LANG environment variables. 

· Use of recovery catalog. Use of recovery catalog involves storage space and maintenance efforts. Backup the recovery catalog.

User Managed Backups

When the database is open and operational, the database is not consistent with the control file, unless the database is in read-only mode. The same applies if the database was shutdown ABORT. The backups taken in this state are considered inconsistent. 

Querying Dynamic Views

Before you begin backup you should obtain information about the files.

SQL> SELECT name, status

FROM V$DATAFILE;

SQL> SELECT name

FROM v$controlfile;

SQL> SELECT member

From v$logfile;

SQL> SELECT t.name tablespace, f.name datafile

FROM v$tablespace t, v$datafile f

WHERE t.ts# = f.ts#

ORDER BY t.name;

Consistent Whole Database Backups

A consistent whole backup is a backup that was taken while the database was shut down. It is not necessary to backup the online redo file if the database was shut down cleanly. 

Performing a consistent database backup

1. Compile a list of all database files to backup

2. Shutdown the database

3. Backup the files by using an OS utility. Backup parameter and password files

4. Restart the Oracle instance

Open Database Backups

If the business requirements do not permit you to shut down the database to perform backups, then you can use the following methods:

Perform backups of all the tablespaces or individual datafiles while they are online or offline. Backup the control file to a binary file or create a script to re-create the control file.

You can perform backups of tablespaces and datafiles if the following requirements are met:

1. The database is in ARCHIVELOG mode

2. You ensure that the online redo logs are archived, either by enabling the Oracle automated archiving or by manually archiving the redo log files.

When the datafile is put in the backup mode, more redo log entries may be generated because log writer blocks images of changed blocks in datafiles in backup mode to the redo log instead of just the row information.  

Performing Online Backups

1. SQL> ALTER TABLESPACE users BEGIN BACKUP;

2. cp /ORADATA/u03/users01dbf /BACKUP/users01.dbf

   Ocopy c:\users\disk01\users01.ora e:\users\backup\users01.ora

3. SQL. ALTER TABLESPACE users END BACKUP;

4. Archive the unarchived redo logs so that the redo required to recover the database backup is archived:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Repeat this for all tablespaces, including SYSTEM and UNDO segment tablespaces. 

Backup Status Information

You can obtain information about the status of datafiles while performing open database backups by:

Query the V$BACKUP view to determine which files are in backup mode. When you backup the status changes to ACTIVE.

SQL> SELECT * FROM v$backup;

The v$datafile_header view changes FUZZY status to YES while the datafiles are backing up. 

SQL> SELECT name, status, fuzzy

FROM v$datafile_header;

If the system crashes or shutdown during backups:

1. The backups will be unusable

2. The database files in backup mode will not be synchronized with the database, because the header is frozen when backup begins

3. the database will not be opened because the Oracle server assumes that the files have been restored from a backup

You can use ALTER DATABASE … END BACKUP to take the datafiles out of backup mode. You should use this only when you are sure that the files were put backup mode, not restored from a backup. 

If you are unsure if a file needs to be recovered or it was left in backup mode, query:

SQL> SELECT  * FROM v$backup;

If a datafile is in ACTIVE mode, issue:

SQL> ALTER DATABASE DATAFILE 2 END BACKUP;

SQL> ALTER DATABASE OPEN;

Verifying Backups Using DBVERIFY Utility

The DBVERIFY utility is located in the bin directory, on UNIX you can issue dbv:

$ dbv file=/ORADATA/u03/users01.dbf logfile=dbv.log

$ dbv file=/ORADATA/u03/users01.dbf start=1 end=500

RMAN Backups

Types of RMAN Backups

1. The entire database, every datafile in tablespace, single datafile.

2. The control file

3. All or selected archive logs

The online redo logs are not backed up with RMAN.

You can make the following types of backups with RMAN:

1. Image copies of data file, control file or archived redo log file. A copy can be made by using OS utility or RMAN. The image copy of a datafile consists of all the blocks in the datafile, including empty blocks. The image copy can include only one file and a single operation of copy cannot be multiplexed.

2. Backup sets can include one or more data files, control file or archived redo log files. 

You can make full or incremental backups. 

Full backup – all blocks in the datafile are backed up.

Incremental backup – includes only the blocks that have changed since the last incremental backup. Incremental backups require a base level (incremental level 0) backup, which backs up all blocks. Incremental level 0 and full backup copy all blocks in datafiles, but full backups cannot be used in incremental backup strategy.

Backup Sets

A backup set consists of one or more physical files stored in an RMAN-specific format. You can make a backup of a backup set. Backup sets can be of two types:

- Datafile – can contain datafiles and control files

- Archived log – contains archived logs, but not datafiles or control files

Control files in datafile backup sets

Each file in a backup set must have the same oracle block size. A controlfile can be included in a backup set by specifying INCLUDE CONTROL FILE or implicitly by backing up file 1 (the SYSTEM datafile).

A backup set is created by the BACKUP command. The FILESPERSET parameter controls the number of datafiles contained in a backup set.

A restore operation must extract files from a backup set before recovery.

Archived redo log file backup sets cannot be incremental

A backup set does not include data blocks that have never been used

Backup Piece

A logical set usually only has one backup piece. A backup piece is a single physical file that contain one or more Oracle data files or archived logs.

For a large database, a backup set might exceed the maximum space for a single tape reel or disk. The size of each backup set piece therefore be limited by using MAXPIECESIZE with CONFIGURE CHANNEL or ALLOCATE CHANNEL commands.

RMAN> BACKUP

FORMAT ‘/BACKUP/df_%d_%s_%p.bus’

DATABASE filesperset = 2;

You can control the number of backup sets that Oracle produces as well as the number of input files that RMAN places into a single backup set. If any I/O errors are received when reading files or writing backup pieces, the job is aborted.

When using the BACKUP command, you must do the following:

· MOUNT or OPEN the target database. RMAN allows you to make an inconsistent backup if the database is in archivelog mode, but you must apply redo logs to make the backups consistent for use in recovery operations.

· Manually allocate a channel for execution of the BACKUP command if you are not using automatic channel allocation.

· If you do not specify FORMAT parameter, RMAN stores the backup pieces in the $ORACLE_HOME/dbs directory. The default file format is %U. 

· You can add INCLUDE CURRENT CONTROLFILE option.

You cannot combine archived redo log files and datafiles into a single backup. Also, you cannot generate unique tag names when backing up using scripts in RMAN. 

BACKUP command options

Full – The server copies all blocks in the backup set, skipping only datafile blocks that never been used. The server session does not skip blocks when backing up archived redo logs or control files. Full backup is not considered an incremental backup.

Incremental level 1-4 – the server session copies data blocks that have changed since the last incremental n backup, where n can be 1-4. When attempting an incremental backup of a level greater than 0, server process checks that a level 0 backup or backup copy exists on the server for each datafile.  If you specify incremental then you must specify the following – DATA FILE, DATA FILECOPY, TABLESPACE or DATABASE. RMAN does not support incremental backups of control files, archived redo log files or backup sets.

Filesperset integer – RMAN compares FILESPERSET value to a calculated value (number of files backed up per number of channels) and takes the lower of the two, ensuring that all of the channels are used. When there are more channels than files to back up, channels remain idle. Input files cannot be split across channels.

Skip – excludes some datafiles or archived redo logs from the backup set. You have the following options within the parameter – OFFLINE (exclude offline datafiles), READONLY or INACCSESSIBLE. 

Maxsetsize integer – specifies a maximum size for backup set in bytes (default), KB, MB or GB. 

Diskratio – directs RMAN to assign only datafiles to backup sets spread across the specified number of drives. Useful for datafiles backups when datafiles are stripped or reside on separate disk spindles.

Delete input – deletes the input files after successful creation of the backup set. Specify this option only when backing up archived redo log files, data file copies or backup sets. 

Include current controlfile – creates a snapshot of the current control file and places it into each backup set produced by this clause.

Format – format of the name of output

%c – specifies the copy number of the backup piece

%p – specifies backup piece number within the backup set. Starts with 1 and increments by 1.

%s – specifies the backup set number – counter in the control file that is increased for each backup set. 

%d – database name

%n – specifies the database name padded to the right with x character to a total length of 8 characters. 

%t – specifies the backup set time stamp, which is a 4 byte value derived as the number of seconds elapsed since a fixed reference time. 

%u – specifies an 8-character name constituted by compressed representations of the backup set number and time that the backup set was created.

%U – specifies a convenient shorthand for %u_%p_%c that guarantees uniqueness in backup names – it is default. 

Backup Piece Size

RMAN>  RUN {

ALLOCATE CHANNEL t1 TYPE ‘SBT_TAPE’

MAXPIECESIZE = 4G;

BACKUP


FORMAT ‘df_%t_%s_%p’ FILESPERSET 3


(tablespace users); }

Parallelization of Backup Sets

You can configure parallel backups by setting the PARALLELISM option of the CONFIGURE command to greater than 1 and manually allocate channels, RMAN parallelizes its operation and writes multiple backup sets in parallel. The server sessions divide the work of backing up the specified files.

RMAN> run {


ALLOCATE CHANNEL c1 TYPE sbt;


ALLOCATE CHANNEL c2 TYPE sbt;


ALLOCATE CHANNEL c3 TYPE sbt;


BACKUP



INCREMENTAL LEVEL = 0



FORMAT ‘/disk1/backup/df_%d_%s_%p.bak’



(DATAFILE 1,4,5 CHANNEL c1 tag=DF1)



(DATAFILE 2,3,9 CHANNEL c1 tag=DF2)



(DATAFILE 6,7,8 CHANNEL c1 tag=DF3);



SQL ‘ALTER SYSTEM ARCHIVE LOG CURRENT’;

}

RMAN automatically parallelizes its operations when when you create multiple backup sets. 

The parallelization of the backups achieved by:

1. Configuring PARALLELISM to more than 0

2. Specifying many files to backup

3. Specifying the FILESPERSET option in the backup set. If it is not specified, only one channel is used to create one backup files, all other channels remain idle.

RMAN Multiplexed Backups

The technique of RMAN multiplexing is to simultaneously read files on disks and then write them into the same backup piece. When more than one file is written to the same backup file or piece, RMAN automatically performs allocation of files to channels or multiplexing.

Multiplexing is controlled by the following:

1. The FILEPERSET parameter on the BACKUP command

2. The MAXOPENFILES parameter of the ALLOCATE CHANNEL and CONFIGURE CHANNEL commands

Duplexed Backup Sets  

You can create up to four identical copies of each backup piece by duplexing the backup set:

BACKUP COPIES

SET BACKUP COPIES

CONFIGURE … BACKUP COPIES

RMAN> BACKUP COPIES 2 DATAFILE 2

FORMAT ‘/BACKUP1/%U’, ‘/BACKUP2/%U’;

Archived Redo Log Backups

At the beginning of every BACKUP … ARCHIVELOG command that does not include an UNTILL clause or SEQUENCE parameter, RMAN attempts to automatically switch out of and archive current redo log file.

In Oracle9i, RMAN performs archived log failover. If any corrupt blocks are detected in an archived redo log file, RMAN searches other archiving destinations for a file without corrupt blocks.

RMAN> BACKUP


FORMAT ‘/disk1/backup/ar_%t_%s_%p’


ARCHIVELOG ALL DELETE ALL INPUT;

Archived redo Log File Backup Sets

You can backup archived redo log files with the BACKUP ARCHIVELOG command or include them when backing up datafiles and control files with the BACKUP … PLUS ARCHIVELOG command;

Archive log backup sets:

· Cannot include datafiles or controlfile backups

· Are always full backups. 

Datafile Backup Set Processing

· Memory buffers are allocated for each file

· Files are sorted in channel by descending size

· Files are checkpointed and the header block is copied

· Files are multiplexed together

· Blocks to include are determined

· Corrupt blocks are checked and checksum is calculated

· Buffers are sent to the output device

RMAN performs backups of datafiles in the following steps:

1. Memory buffers are allocated for each file in the set. Each buffer is sized by the (db_block_size*db_file_direct_io_count).

2. The files to be backup up are in descending order of size in a channel.

3. The files in the set are checkpointed and each file header block is copied

4. Each block is checked before inclusion in the backup as follows;

– If incremental, the SCN in the block is checked to see if it has ever contained data.

· If full or level 0, the block is checked to see if it has ever contained data.

5. If corrupt blocks are found, this information is stored in the control file and can be queried using V$BACKUP_CORRUPTION after backup completion.

6. The checksum is calculated

7. When the output buffer is filled, it sent to the output device.

Backup Constraints

· the database must be mounted or open

· Online redo log backups are not supported

· Only clean backups are usable in NOARCHIVELOG mode

· Only current datafile backups are usable in ARCHIVELOG mode

Image Copies

An image copy contains a single datafile, archived redo log file or control file. An image copy can be created with the RMAN COPY command or an OS command.

When you create the image copy with the RMAN COPY command, the server session validates the blocks in the file and records the copy in controlfile.

· Image copy can be only written to disk

· Can be used immediately, does not need to be restored

· Is a physical copy of a single data file, archived log or control file

· Is most like an OS backup – contains all blocks

· Can be part of incremental strategy

RMAN> COPY


DATAFILE ‘/ORADATA/users_01_db01.dbf’ TO



‘/BACKUP/users01.dbf’ tag=DF3,


ARCHIVELOG ‘arch_1060.arc’ TO



‘arch_1060.bak’;

You can specify NOCHECKSUM to speed up copying process. You can use CHECK LOGICAL option after physical corruption check. You can specify MAXCORRUPT is exceeded then the command terminates witout populating the V$COPY_CORRUPTION view.

RMAN> CONFIGURE DEVICE TYPE DISK PARALLELISM 4;


COPY # 3 FILES COPIED IN PARALLEL


DATAFILE 1 TO ‘/BACKUP/df1.dbf’,


DATAFILE 2 TO ‘/BACKUP/df2.dbf’,


DATAFILE 3 TO ‘/BACKUP/df3.dbf’;

RMAN> COPY # SECOND COPY COMMAND


DATAFILE 4 TO /BACKUP/df4.dbf’;

Copying the Whole Database

1. Mount the data database for a whole consistent backup

2. Use the REPORT SCHEMA to list the files

3. Use the COPY or make and image copy of each datafile with CURRENT CONTROLFILE

4. Use the LIST COPY to verify the copies

Making Incremental Backups
Full backups contain all datafile blocks

Differential incremental backups contain only modified blocks from level n or lower

Cumulative incremental backups contain only modified blocks from level n-1 or lower

Differential Incremental Backup Example:

You are maintaining a 100GB database. You estimate that open database backup will take 4 hours. Level 0 backup cannot be performed more than once a week.

Your strategy:

A level 0 backup will be performed each week on the day with least activity (Sun).

RMAN> BACKUP INCREMENTAL level 0 database;

Incremental level 2 backups will be performed every other day, except Wed.

RMAN> BACKUP INCREMENTAL level 2 database;

Wed is a day with less database activity, so all blocks changed since Sun are copied to assist with the speed of recovery. For example, if a failure occurs on Fri, then only Sun, Wed and Thu backups need to be restored (Mon and Tue are not required):

RMAN> BACKUP INCREMENTAL level 1 database;

On Thu, the incremental backup  was replaced by a full backup. Because this does not change the backup base level, Friday’s backup copy changes since Wed. The backup therefore can be discarded before the next level 0. If by mistake the backup on Thu was a level 0, then the backup on Fri copies all changed blocks since Thu, which is the new base level. The backup now must be kept until the next level 0.

Cumulative Incremental Backups Example

A cumulative incremental level n backup (where n > 0) copies all changed blocks since the previous backup at level n-1 or lower. 

A cumulative incremental backup backs up blocks previously backed up at the same level. Therefore, they may take longer, write out more blocks, and produce larger backup files than noncumulative backups.

Cumulative incremental backups are provided for recovery speed, because fewer backups must be applied at each level when recovering.

Example

Cumulative incremental backups duplicate changes already copied by the previous database incremental backup at the same level. This means that only one incremental backup of the same level is needed for recovery.

RMAN> BACKUP INCREMENTAL level 2 cumulative database;

Backup in NOARCHIVELOG

1. Ensure sufficient space for the backup

2. Shut down NORMAL or IMMEDIATE

3. Mount the database

4. Allocate multiple channels if not using automatic

5. Run the backup command

6. Verify that the backup is finished and catalogued 

7. Open the database for normal use

RMAN> BACKUP DATABASE FILESPERSET 3;

RMAN Control File Autobackups

Use the CONFIGURE CONTROLFILE AUTOBACKUP. RMAN automatically performs control file autobackup after every BACKUP or COPY command (default is OFF).

RMAN> SET CONTROLFILE AUTOBACKUP

FORMAT FOR DEVICE TYPE DISK TO ‘controlfile_%F’;

Tags for Backups and Image Copies

A tag is a meaningful name that you can assign to a backup set or image copy. 

Example: 

Each month, a full backup of datafiles 1,2,3 and 4 is performed. The tag in the control file for this backup is month_full_backup, even though the physical name is df_DB000_863_1.dbf.

Each week a full backup of datafiles 3 and 4 is performed. The tag  name for this backup is week_full_backup.

RMAN Dynamic Views

You can use the following views to obtain RMAN information stored in the control file.

V$ARCHIVED_LOG shows which archives have been created, backed up, and cleared in the database.

V$BACKUP_CORRUPTION shows blocks that have been found corrupt during a backup.

V$COPY_CORRUPTION same as above for image copy.

V$BACKUP_DATAFILE is useful for creating equal sized backup sets by determining the number of blocks in each data file. It can also find the number of corrupt blocks for the datafile.

V$BACKUP_REDOLOG shows archived redo logs stored in backup sets

V$BACKUP_SET shows backup sets that have been created.

V$BACKUP_PIECE shows backup pieces created for backup sets.

Monitoring RMAN Backups

How to monitor the copy process

1. Start RMAN and connect to the target database

RMAN target / CATALOG rman/rman@rcat

2. Set the COMMAND ID parameter after allocating the channels and then copy the desired object.

RUN {


ALLOCATE CHANNEL t1 TYPE DISK;


SET COMMAND ID TO ‘rman’;


COPY DATAFILE 1 TO ‘/u01/backup/df1.cpy’;


RELEASE CHANNEL t1;}

3. Query the V$SESSION_LONGOPS view to determine the status of the copy.

SQL> SELECT sid, serial#,context, sofar, totalwork


ROUND(sofar/totalwork*100,2) “% Complete”


FROM v$session_longops


WHERE opname like ‘RMAN;%’


AND opname NOT LIKE ‘RMAN: aggregate%’;

4. Get SID and SPID

SQL> SELECT sid, spid, client_info


FROM v$process p, v$session s


WHERE p.addr=s.paddr


AND client_info LIKE ‘%id=rman’;

Miscellaneous RMAN Issues

By default error checking for physical corruption is enabled. View V$BACKUP_CORRUPTION and V$COPY_CORRUPTION to find corrupted blocks. Error checking for logical corruption is disabled. 

User Managed Complete Recovery
Media Recovery
· Used to recover a lost or damaged current control file or datafile

· Requires explicit invocation

· Operates as follows – 1) files are restore from backup; 2) redo data is applied to the restored files from archived redo log files and online redo logs

When you restore a file, you are replacing the massing or damaged file with a backup copy. 

When you recover a file, changes recorded in the redo log files are applied to the restored files. 
Recovery steps:

1. Damaged or missing files are restored from a backup

2. Changes from the archived redo log files and online redo log files are applied as necessary. Undo blocks are generated at this time. This is rolling forward or cache recovery.

3. The database may now contain both committed and uncommitted transactions. 

4. The undo blocks are used to rollback any uncommitted changes. This is rolling back or transaction recovery. 

5. The database is now in a recovered state.

Restoration and Datafile Media Recovery with User Managed Procedures

When you restore a file, you use OS commands to copy the file from a backup. You use SQL*PLUS RECOVER command to perform an automatic recovery or step by step log files recovery.

Recovery in NOARCHIVELOG Mode

When media failure occurs in a database in NOARCHIVEMODE, you need a valid closed database backup to recover. In NOARCHIVELOG mode all database files must be restored, even if only one datafile was damaged. Make sure you restore all datafiles and control files. You can also restore online redo log files. All files must be synchronized for the database to open.

You should restore the password file and parameter file only if they are lost or damaged.

If no redo log files have been overwritten, you do not need to restore them.

Recovery in NOARCHIVELOG mode – Advantages and Disadvantages

Advantages

· Easy to perform, because only a restore from the backup files is required. 

· The time taken for recovery is merely the length of time you restore all files. 

Disadvantages:

· All data entered by users since last backup will be lost and must be reapplied manually

· The entire database must be restored from the last whole closed backup, even if one datafile is lost.

User Managed Recovery in NOARCHIVELOG Mode Example
Disk 2 is damaged, losing datafile #2. Only 2 online redo log files exist. The last backup was taken at log sequence 144 and current sequence 146. You cannot recover the datafile, because redo log 144 has been overwritten. You must shutdown the database and restore all files.

SQL> SHUTDOWN ABORT;

To restore files:

UNIX: cp /BACKUP/* /databases/DB01/ORADATA

NT: copy d:\disk1\backup\*.* d:\disk1\data\

When the copy is finished, restart the instance:

SQL> CONNECT / AS SYSDBA;

SQL> STARTUP;

Notify the users that they will need to reenter data from the time of the last backup.

Recovery in NOARCHIVELOG Mode Without Redo Log File Backups

1. If the database is open, shut it down: 

SQL> SHUTDOWN IMMEDIATE;

2. restore the most recent whole database backup with OS commands. You must restore all of the data and control files, not just damaged files. 

UNIX: cp /BACKUP/* /databases/DB01/ORADATA

NT: copy d:\disk1\backup\*.* d:\disk1\data\

3. Because you did not backup the online redo log files, you cannot restore them with the datafiles and controlfiles. So that Oracle can reset the online redo log files, you must mimic incomplete recovery as follows:

SQL> RECOVER DATABASE UNTIL CANCEL;

SQL> CANCEL

4. Open the database:

SQL> ALTER DATABASE OPEN RESETLOGS;

Recovery in ARCHIVELOG Mode

Complete recovery
- Uses redo data of incremental backups

- Updates the database to the most current point in time

- Applies all redo changes

Incomplete recovery

· Uses backup and redo logs to produce a noncurrent version of the database

Complete Recovery in ARCHIVELOG Mode
When media failure occurs in a database in ARCHIVELOG mode, you need: 

· A valid backup containing the lost or damaged datafiles taken after the database was set in ARCHIVELOG mode

· All archived logs from the time of the backup that you are using through the present time

· The redo log files that contain transactions not yet archived

Advantages:

· Only need to restore lost files

· Recovers all data to the time of failure

· Recovery time is the time it takes to restore lost files and apply all archived log files

Disadvantages:

· Must have all archived log files since the backup from which you are restoring

Determining which files need recovery

To identify datafiles needing recovery, and from where recovery needs to start, use the:

SQL> SELECT * FROM V$RECOVER_FILE;

The ERROR column returns two possible reasons why the file needs to be recovered.

· NULL if the reason is unknown

· OFFLINE NORMAL if recovery is not needed

The CHANGE# column returns the SCN from where recovery must start.

Locating archived redo log files to apply
SQL> SELECT * FROM V$RECOVERY_LOG;

It shows log names and dates.
RECOVER command

To recover a mounted database:

SQL> RECOVER DATABASE;

 Or 

SQL> RECOVER DATAFILE ‘/ORADATA/u03/users01.dbf’;

To recover an open database:

SQL> RECOVER TABLESPACE users;

Or

SQL> RECOVER DATAFILE 3;

Using archived redo log files during recovery

To change archive location use the ALTER SYSTEM ARCHIVE LOG … command.
To apply redo log files automatically:

· Issue the SET AUTORECOVERY ON command before starting media recovery

· Enter AUTO when prompted for an archived log file

· Use RECOVER AUTOMATIC … command

During recovery, the Oracle server can manually or automatically apply the necessary archived and online redo log files to reconstruct the data files. Before a redo log file is applied, the Oracle server suggests a logfile to apply.

Restoring archives to a different location

If archived redo log files are not restored to the LOG_ARCHIVE_DEST directory, then the Oracle server needs to know before recovery by one of the following methods.
· Specifying the location and name at the recover prompt:

· Using SQL> ALTER SYSTEM ARCHIVE LOG START TO ‘/’;

· Using SQL> RECOVER FROM ‘/’ DATABASE;

How to apply redo log files automatically

· Before starting media recovery – SQL> SET AUTORECOVERY ON

· Enter AUTO when prompted for a redo file
· Use AUTOMATIC option of the RECOVER command: SQL> RECOVER AUTOMATIC DATAFILE 4;

Restoring datafile to a new location with user-managed procedures

· Use OS commands to restore the datafile to the new location

· Startup MOUNT, use the ALTER DATABASE RENAME FILE command to record the change in the control file

Complete recovery methods

1. Closed database recovery for:
-SYSTEM datafiles

- UNDO segments datafiles

- Whole database

2. Open database recovery, with database initially opened (for file loss)

3. Open database recovery with database initially closed (for hardware failure)

4. Datafile recovery with no datafile backup

There are four methods for performing complete recovery
Method 1: Recovering a closed database

Use this method when:

· The database is not operational 24 hours a day, 7 days a week.

· The recovered files belong to the SYSTEM or UNDO tablespace

· The whole database or majority of datafiles need recovery

Example. You have determined that u01 contains corrupt blocks. This is where datafile 1 is stored. By querying V$DATFILE and V$TABLESPACE views, you discover that datafile 1 is one of the files belonging to the SYSTEM tablespace. Proceed to recover.
1. SQL> SHUTDOWN ABORT;

2. Restore files from most recent backup: UNIX> host cp /BACKUP/system01.dbf /ORADATA/u01

3. Start the instance in MOUNT mode and recover datafile: SQL> STARTUP MOUNT; SQL> RECOVER DATABASE;

4. To bring the datafiles to the point of failure all needed archived redo logs and redo logs are applied.

5. When recovery is finished, all data files are synchronized. Open the database. SQL> ALTER DATABASE OPEN;

6. Tell users the database is open and they can enter all data that was missing since the last backup.

Method 2: Recovering an open database, initially opened

Used when

· File corruption, accidental loss of file, or media failure has occurred, which has not resulted in the database being shut down.

· The database is operational 24X7 

· Recovered files do not belong to the SYSTEM or UNDO segment tablespaces

Example. Your database is currently open and datafile 2 has ben accidentally removed using OS commands. Because the database is currently open, you can use the following command to determine which tablespace the datafile belongs to.
SQL> SELECT file_id, f#, file_name,

Tablespace_name tablespace, status

FROM dba_datafiles;

1. Issue the following query to take datafile 2 offline:

SQL> SELECT d.file# f#, d.name, d.status, h.status

FROM v$datafile d, v$datafile_header h

WHERE d.file#=h.file#;

The rbs_01.dbf returns D.STATUS RECOVER, H.STATUS OFFLINE. Oracle already taken the file offline.
2. Because the file is offline, you can restore it from a backup: UNIX> host cp /disk1/backup/df2.dbf /disk2/data/

3. Use recover command to apply the archives and redo log files to restored data file. SQL> RECOVER DATAFILE ‘/disk2/backup/df2.dbf’; or SQL> RECOVER TABLESPACE USER_DATA;

4. When recovery is finished, bring all datafiles are synchronized. Bring the datafile online: SQL> ALTER DATABASE DATAFILE ‘/disk2/backup/df2.dbf’ ONLINE; or SQL> ALTER TABLESPACE USER_DATA ONLINE;

Method 3: Recovering an open database, initially closed

Used when:

· A media or hardware failure has shut the system down
· The database is 24X7

· The restored files do not belong to the SYSTEM or UNDO tablespace

Example. You have just determined that the media failure was due to a failed disk controller, which contains only disk 2. From your familiarity with the database, you know datafile 2 is not a system or rollback segment datafile.

1. Mount the database. It will not be open because datafile 2 cannot be opened. If you are not sure of the tablespace number to which the file belongs: SQL> SELECT d.file# f#, d.name, d.status, h.status

FROM v$datafile d, v$datafile_header h

WHERE d.file#=h.file#;

2. If the datafile is not offline, the database will not open. Therefore, the file must be taken offline. SQL> ALTER DATABASE datafile ‘/disk2/data/df2.dbf’ OFFLINE;

The ALTER TABLESPACE command cannot be issued because the database is not open.

3. SQL> ALTER DATABASE OPEN; The users can use the system.

4.Now restore the file to another disk (because disk 2 was damaged). UNIX> host cp /disk1/backup/df2.dbf /disk3/data/

5. SQL> ALTER DATABASE RENAME FILE ‘/disk2/data/df2.dbf’’ TO ‘/disk3/data/df2.dbf’’;
6. Use RECOVER or ALTER DATABASE RECOVER command to start applying the archived and online redo log files. SQL> RECOVER DATAFILE ‘‘/disk3/data/df2.dbf’’ or SQL> RECOVER TABLESPACE user_data;
7. When the recovery is finished all datafiles are synchronized. SQL> ALTER DATABASE datafile ‘/disk3/data/df2.dbf’’ ONLINE; or SQL> ALTER TABLESPACE user_data ONLINE;

Method 4: Recovering a datafile with no backup

Used when:
· Media or user failure has resulted in loss of a datafile that was never backed up

· All archived logs exist since the file was created

· The restored files do not belong to the system or undo segment tablespace

Note: during recovery all archived logs must be available to the Oracle server on disk. If they are on a backup tape, you must restore them first.

Example. Datafile 4 on disk 1 was lost. When restoring the datafile from tape, you receive an error indicating that the file was not backed up. Ypo locate the DBA who created the TABLE_DATA tablespace two days ago and find that it contains important data, but it never was included in the backup strategy. Because datafile 4 is not a system or rollback segment datafile, and you have all archived logs for the past two days, you can proceed as follows.
1. If the database is closed, then mount the database, take the datafile with no backup offline, and open the database. This allows who do not need the TABLE_DATA tablespace to work on the system. If the database is open, take the datafile or tablespace offline with IMMEDIATE option to avoid DBWr trying to write to a file that does not exist. SQL> ALTER TABLESPACE table_data OFFLINE IMMEDIATE; You confirm the recovery status by querying V$RECOVER_FILE to check status of a backup: SQL> SELECT * FROM v$recover_file; 
2. Re-create the file: SQL> ALTER DATABASE CREATE DATAFILE ‘/disk2/DATA/df4.dbf’ AS ‘/disk1/DATA/df4.dbf’; Next, query – SQL> SELECT * FROM v$recover_file;

3. Use RECOVER or ALTER DATABASE RECOVER commands to start applying the archived and online redo log files to the re-create datafile: SQL> RECOVER TABLESPACE table_data; To bring the datafile to the point of failure all needed archived redo log and online redo log files need to be applied. All datafiles are now synchronized.

4. When recovery is finished – SQL> ALTER TABLESPACE ONLINE; The recovery is complete.

Read-Only Tablespaces Recovery

Recovery cases

Case 1. The tablespace being recovered is read only and was read-only when the last backup occurred. In this case you simply restore the tablespace from the backup. There is no need to apply any redo info. 

Case 2. The tablespace being recovered is read-write, but was read-only when the last backup occurred. In this case, you need to restore the tablespace from the backup and apply redo info from the time when the tablespace was made read write.
Case 3. The tablespace being recovered is read-only, but was read-write when the last backup occurred. Because you should always backup a tablespace  after making it read-only, you should not experience this situation, However, if this does occur, you must restore the tablespace from the backup and recover up to time that the tablespace  was made read-only.

Read-Only Tablespace Recovery Issues

Recreating a control file

If you need to recreate a control file with the CREATE CONTROLFILE command and your database has read-only tablespaces, you must follow special procedures. Issue the ALTER DATABASE BACKUP CONTROLFILE TO TRACE to get a listing of procedures.
Renaming datafiles

If you cannot restore a copy of the datafiles in a read-only tablespace to the correct destination, you can use ALTER DATABASE RENAME command to place the files in a new location. 

Backup controlfile

The procedure for recovering read-only tablespaces with a backup control file is essentially the same for offline normal tablespaces, except that you need to bring the tablespace online after the database is open.

Recreating Control File

You need to recreate control file if:

1. All control files are lost because of a failure

2. The name of a database needs to be changed

3. The current settings in the control file need to be changed.

Recovering control files

1. Use a current copy to restore a lost file. This assumes you have not lost your other control files.
2. Use CREATE CONTROLFILE command to create a new file. To do this you must know all of the files for the database. 

3. Use the RECOVER DATABASE USING BACKUP CONTROLFILE command. This is necessary if all control files have been lost.

RMAN Complete Recovery
Restoration and datafile media recovery using RMAN

When you use the RESTORE command, RMAN automatically restores the files unless they are already in place and the header has correct file information. When you use RECOVER, RMAN applies changes from online redo log files and archived redo log files. Or it uses incremental backups.

Using RMAN you can restore on the following level:

· DATABASE

· TABLESPACE

· DATAFILE

In complete recovery, all redo log entries and archived redo log files are used to recover database. 
RMAN target /

RMAN> STARTUP MOUNT

RMAN> RESTORE DATABASE;

RMAN> RECOVER DATABASE;

RMAN> ALTER DATABASE OPEN RESTELOGS;

Using RMAN to recover a database in ARCHIVELOG mode

Example. This example assumes that:

· A full backup taken using RMAN is available on disk

· The current control files were not damaged and do not need to be restrored

Consider the following when RMAN restore and recovery operations are performed on a database in NOARCHIVELOG mode.
· You can only restore using RMAN if the backups were taken or registered with RMAN

· To restore to a previous point in time, you may have to use the backup of an older control file and use the RESTORE CONTROL FILE option. The database should be in NOMOUNT state.

· The target database must be in mount state for the restoration of datafiles.

· All of the datafiles must be restored from the backup taken at the same time.
· The ALTER DATABASE OPEN RESETLOGS command may be required if a backup of controlfile was restored.

· A whole backup is required after OPEN WITH RESETLOGS command.
Using RMAN to recover database in ARCHIVELOG mode

Example. In this example you use RMAN to restore and recover the whole database. This example assumes that:
· A full backup taken using RMAN is available on disk.

· The current controlfiles were not damaged and o not need to be restored.

· All datafiles are damaged or lost

Using RMAN to restore datafiles to a new location
Use the SET NEWNAME command to restore the datafile to a new location
Use the SWITCH command to record the change in the controlfile

Restoring datafiles to a new location

1. rman target /

2. RMAN> STARTUP MOUNT

3. Use RMAN to restore datafile to the new location and record the change in the control file.

RUN {

SET NEWNAME FOR DATAFILE 1 TO ‘/disk2/system01.dbf’

RESTORE DATABASE;

SWITCH DATAFILE ALL;

RECOVER DATABASE;

ALTER DATABASE OPEN;

Using RMAN to recover a tablespace

If you have determined that you need to restore and recover the USERS tablespace, issue:
RUN {

SQL “ALTER TABLESPACE USERS OFFLINE IMMEDIATE”;

RESTORE TABLESPACE USERS;

RECOVER TABLESPACE USERS:

SQL “ALTER TABLESPACE USERS ONLINE”;

}

Using RMAN to relocate a tablespace
· Use the SET NEWNAME command to restore the files

· Use the SWITCH command to record the new names in the control file

· Use RECOVER TABLESPACE command to recover the datafiles of the tablespace

If a datafile cannot be accessed due to a disk failure, you need to restore it to anew location or switch to an existing iamge copy.

The same procedure is useful when you want to relocate the tablespace, because you are running short of disk space in one drive or you reorganizing database to improve performance. 

Example. You notice that u03 has been corrupted and the database is still open. Ocasionally, users complain that they cannot access information in datafile 3.

1. Check the location and the size of the datafile on u03:
SQL> SELECT file#, name, bytes FROM V$DATAFILE;

You determine there is enough space on u04 for datafile 3.

2. make sure that the tablespace is offline so it can be restored using RESTORE command.

3. Because the file was copied to  anew location (using SET NEWNAME) the file must be made current by notifying Oracle of the new file location using the SWITCH command.

4. Use the RECOVER command to start applying the combination of incremental backups, cumulative backups, archived and online redo logs to synchronize the database.

5. When recovery is finished, bring the datafile online. Notify the users that the database is available for use.

The following script can be used.

RUN {

SQL> “ALTER TABLESPACE USERS OFFLINE IMMEDIATE”;

SET NEWNAME FOR DATAFILE ‘/ORADATA/u03/users01.dbf’ TO ‘/ORADATA/u04/users01.dbf’;

RESTORE (tablespace users); 

SWITCH datafile 3;

RECOVER TABLESPACE users;

SQL> “ALTER TABLESPACE tbs1 ONLINE”;}

User-managed incomplete recovery

Incomplete recovery reconstructs the database to a prior point in time (before the time of failure). This situation results in loss of data committed after the time of recovery. Perform this type of recovery only if absolutely necessary. You will need:

· A valid offline or online backup of all the datafiles made before the recovery point

· All archived logs from the backup until the specified time of recovery

Incomplete recovery is performed when complete recovery fails. 

Types of Incomplete recovery

· Time-based recovery

· Cancel-based recovery

· Change-based recovery

You may need to recover using a restored control file when:
· Control files are lost

· Performing incomplete recovery to a point when the database structure is different than the current

Time-Based Recovery
This method of recovery is terminated after all changes up to a specified time are committed. Use this approach when:

· Unwanted changes to data were made or important tables dropped and the approximate time of error is known. 

· The approximate time in a mirrored online redo log becomes corrupt. Mirroring of logs should prevent the need for this type of recovery.

Cancel-Based Recovery

This method of recovery is terminated by entering CANCEL at the recovery prompt (instead of a log name). Use this approach when:
· A current redo log file or group is damaged and is not available for recovery. 

· An archived redo log file needed for recovery is lost. Frequent backups and multiple archive destinations should prevent this type of recovery.

Change-Based Recovery
This method of recovery is terminated after all changes up to the specified system change number SCN are committed. Use this approach when recovering databases in a distributed environment. 
Recovery using a backup control file

This method of recovery is terminated when the specified method of recovery (cancel-, time-, or change-based) has completed and control files are recovered. You must specify in the recover database command that an old copy of the control will be used for recovery. Use this approach when:

· All control files are lost, the control file cannot be re-created, and a binary backup of control file backup exists.

· Restoring a database, with a different structure than the current database, to a prior point in time.

Incomplete recovery guidelines

· Follow all steps carefully

· Take whole database backups before and after recovery (at least archive logs and backup controlfile)

· Always verify that the recovery was successful

· Backup and remove archived logs

· Check alert.log

User managed procedures for incomplete recovery

1. Shut down and backup the database

2. Restore all datafiles. Do not restore the control file, password file or parameter file.

3. Mount the database

4. Recover the datafiles to a point before the time of failure.

5. Open the database with RESETLOGS

6. Perform a closed database backup

Recover command overview

Recover a database until cancel

RECOVER DATABASE UNTIL CANCEL

Recover a database until time

RECOVER DATABASE UNTIL TIME ‘2005-06-07:14:22:03’
Recover a database until SCN

RECOVER DATABASE UNTIL SCN 234

Recover database using backup controlfile:

RECOVER DATABASE UNTIL TIME ‘2005-06-07:14:22:03’ USING BACKUP CONTROLFILE

Recovery Examples
Time-Based Recovery example

· The current time is 12:00PM on March 9, 2001

· The EMPLOYEES table has been dropped at 11:45AM

· Database activity is minimal 

· The table must be recovered

1. Shut down database and begin recovery. Because approximate time of failure is known and the database structure has not changed since 11:45AM, you can use the UNTIL TIME method. If database open, shut it down.

2. Restore all datafiles from the most recent backup. If needed, restore the archived logs to LOG_ARCHIVE_DEST location or, if out of space, use the ALTER SYSTEM ARCHIVE LOG START TO ,. Or SET LOGSOURCE <> to change the location.

3. Mount the database

4. Recover the database:

SQL> RECOVER DATABASE UNTIL TIME ‘2001-03-09-:11:44:00’;
Media recovery complete

5. To synchronize datafiles with controlfiles and redo logs, open the database by using the RESTELOGS option:

SQL> ALTER DATABASE OPEN RESETLOGS;

SQL> ARCHIVE LOG LIST;

6. Before performing the whole database backup, query the EMPLOYEES table to make sure it exists.

7. Notify users they can resume operations.

Cancel-Based recovery example
· The current time is 12:00PM on March 9, 2001

· The EMPLOYEES table was dropped while someone was trying to fix bad blocks

· Log files exist on the same disk

· The table was dropped at approximately 11:45AM

· Staff is currently in a meeting

· Redo logs are not multiplexed

· One of the online redo logs is missing

· The missing redo logs are not archived

· The redo log contained information from 11:34AM
· 26 minutes of data will be lost

· Users can recover their data

1. Shut down database

2. Restore all datafiles from the most recent backup

3. You already have a valid backup, so mount the database

4. Recover database until log seq 48

SQL> RECOVER DATABASE UNTIL CANCEL

ORA-00279:change 148448…02/02/01 12:45:20 needed for thread

Log applied

ORA-00279:change 148448…03/09/01 11:33:20 needed for thread

CANCEL

Media recovery cancelled

5. Open database by using resetlogs option

6. Check that employees table exists

7. When the recovery is complete, make a backup.

Using a backup controlfile during recovery example
- The current time is 12:00PM on March 9, 2001

- The tablespace EMPLOYEE has been dropped

- The error occurred at 11:45AM

- Many employee records were updated this morning, but not since 11:00AM

- Backups are taken every night

1. The tablespace containing EMPLOYEES table has been dropped as follows:

SQL> DROP TABLESPACE emp_ts INCLUDING CONTENTS;

2. You immediately ask users to log out and keep records of data entered over the past 15 minutes. While you wait for all users to log out and remaining sessions to be killed, you plac the database in RESTRICTED MODE to prevent further access.

SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION;

3. During your investigation, yuou locate the binary control file from the backup last night. Because the current controlfile will be replaced, you carefully gather database structure information in case it is required.

SQL> SELECT * FROM v$LOG

SQL> SELECT tablespace_NAME, file_name FROM DBA_DATA_FILES WHERE TABLESPACE_NAME=’EMP_TS’;
4. You confirm the error by checking the alert log:

UNIX> vi /disk1/BDUMP/alert*.log

…

Fri mar 11:45:44 1999

Drop tablespace emp_ts including contents

…

5. Shut down the database, backup control files, then restore all datafiles and control files fro the database at a time when the tablespace existed. After attempting to open the database, the following error informs you that the redo logs and control files are not syncronyzed:

ORA-00314: log1 of thread 1, expected sequence# doesn’t match

ORA-00312: online log 1 thread 1: ‘/disk1/data/log1a.rdo’

6. Verify whether any offline datafiles exist and place them online, because any offline files may be unrecoverable after recovery.

SQL> SELECT * FROM v$recover_file;

SQL> ALTER DATABASE DATAFILE 4 ONLINE;

7. Perform recovery 

SQL> RECOVER DATABASE UNTIL TIME ‘2001-03-09:11:44:00’ USING BACKUP CONTROLFILE;

If the following error appears instead of “Media recovery complete”, it indicates that either datafiles need to be restored from an earlier backup, or more recovery is required (not possible here).

ORA-01152: file 7 was not restored from a sufficiently old backup

ORA-01110: datafile 7: ‘/disk1/data/new01.dbf’

8. To synchronize datafiles with the control files and redo logs, open the database with RESETLOGS.

9. Verify that the employees table exists

10. Make a whole backup.

11. Notify users that the table can be used.

RMAN Maintenanace
Crosschecking backups and copies

Use CROSSCHECK command to:

· Ensure repository information is synchronized with actual files

· Check the status of a backup or copy

· Update the repository when files have been deleted with OS commands

Performing  a crosscheck provides you with a way to ensure that data about backup sets and image copies in the RMAN repository is synchronized with corresponding data on disk or in media management catalog.

You can LIST command to obtain a report of the backups and copies that you have made and then use the CROSSCHECK to ensure that these files still exist. If RMAN cannot find the file, it updates the repository records to EXPIRED. You can find out which files are expired by using LIST EXPIRED. Then, you can run DELETE EXPIRED to remove the repository records for all expired files.

If the backup or copy is on disk, then use the CROSSCHECK whether the header of the backup set is valid. If the backup is on tape, then the command simply checks if it exists.

CROSSCHECK BACKUP;

CROSSCHECK COPY;

Deleting backups and copies
You can delete backups and image copies and update the repository and recovery catalog. 

DELETE BACKUPSET 102;

DELETE NOPROMPT EXPIRED BACKUP OF TABLESPACE users;

DELETE OBSOLETE;

DELETE OBSOLETE RECOVERY WINDOW OF 7 DAYS;

Use the BACKUP … DELETE INPUT command to:

· Delete input files upon successful creation of the backup set

· Delete archived redo log files, datafile copies and backup sets

The BACKUP … DELETE INPUT is used only with archived redo log files, datafile copies or backup sets. 

If you specify DELETE ALL INPUT when backing up archived redo log files, then RMAN deletes all copies of corresponding archived redo logs that match the selection criteria. The BACKUP ARCHIVELOG command only backs up one copy of each distinct log sequence number, so if you specify the DELETE INPUT option without the ALL keyword, RMAN deletes only the copy of the file that it backs up.

Changing the availability of RMAN backups and copies

· Change the status of a backup or copy to unavailable with the CHANGE UNAVAILABLE command

· Return the status to Available with the CHANGE … AVAILABLE command

CHANGE BACKUPSET 100 UNAVAILABLE;

CHANGE DATAFILECOPY ‘/DB01/BACKUP/users01.dbf’ UNAVAILABLE;

CHANGE BACKUP OF CONTROLFILE UNAVAILABLE;

CHANGE COPY OF ARCHIVELOG SEQUENCE BETWEEN 230 AND 240 UNAVAILABLE;

Exempting a backup or copy from the retention policy

· Use the CHANGE … KEEP command to exempt a backup or copy from the retention policy

· Use the CHANGE … NOKEEP command to cancel the exemption

A retention policy specifies when RMAN should consider the backups and copies obsolete. You can use the CHANGE … KEEP command to make a file exempt from the retention policy and CHANGE … NOKEEP to make the file conform to the retention policy.

CHANGE BACKUPSET 123 KEEP FOREVER NOLOGS;

Make a datafile exempt from the retention policy for 60 days.

CHANGE DATAFILE //DB01/BACKUP/users01.dbf’ KEEP UNTIL ‘SYSDATE+60’;

The FOREVER specifies that the backup copy never expires. You must use a recovery catalog when forever is specified; otherwise the backup records eventually age out of the control file.

When you specify the LOGS parameter, you have indicated that all of the archived logs required to recover this backup or copy must remain available as long as this backup or copy is available. 

NOLOGS specifies that the backup or copy cannot be recovered because the archived logs needed to recover this backup set will not be kept. You can only use this backup or copy to restore the database to the point in time that the backup copy was taken.

You can use UNTIL TIME=’date_string’ parameter to specify the date until which the backup or copy must be kept. You can either specify a specific time by using the current NLS_DATE_FORMAT, or a SQL datae expression such as ‘SYSDATE+365’.

Cataloging files in the repository

When you make backups with OS commandes, no information is recorded in the repository. You must manually notify RMAN when you make backups with an OS system utility.

For an OS backup to be cataloged, it must be:

· Accessible on disk

· A complete image copy of a single file

· A consistent or inconsistent datafile, controlfile or archived redo log backup. If it is inconsistent, then it must have been created with the BEGIN BACKUP / END BACKUP statements. If it is a control file backup, then it should have been made with the ALTER DATABASE BACKUP CONTROLFILE statement.

RMAN treats the OS backups as datafile copies. During cataloging, RMAN only checks the file header. It does not check whether the file was successful. 

You can make RMAN aware of the existence of archived redo log files that are not recorded in the repository. You need to do this if you have restored your control file from a backup and you want to update the repository with archived redo log information.

Catalog a backup taken with an OS command:

CATALOG DATAFILECOPY ‘/DB01/BACKUP/users01.dbf’;

Catalog archived redo log files:

CATALOG ARCHIVELOG ‘/ORADATA/ARCHIVE1/arch_12.arc’, ORADATA/ARCHIVE1/arch_13.arc’;

Uncataloging RMAn records

Use the CHANGE … UNCATALOG command to:

· Update the record in the repository to DELETED status

· Delete a specific backup or copy record from the recovery catalog

CHANGE ARCHIVELOG … UNCATALOG;

CHANGE DTAFILECOPY ‘/DB01/BACKUP/users01.dbf’ UNCATALOG;

Recovery catalog creation and maintenance
The recovery catalog is a schema that is created in a separate database. It contains the RMAN metadata obtained from the target database controlfile. RMAN propagates information about the database structure, archived redo log files, backup sets, and datafile copies into the recovery catalog from the control file of the target database.

You should use a catalog when you have multiple target databases to manage. The recovery catalog is maintained by RMAN when you do the following:

1. Register the target database in the catalog

2. Resynchronized the catalog with the control file of the target database

3. Reset the database to a previous incarnation

4. Change information about the backups or files

5. Perform a backup, restore or recovery operation

You can use the REPORT and LIST commands to obtain information from the recovery catalog. You can store scripts in the recovery catalog.

Benefits of using recovery catalog

· Metadata about multiple target databases in one catalog

· Metadata about multiple incarnations of a single target database

· Historical metadata

· Reporting on the target database at a noncurrent time

You MUST use a recovery catalog if you plan to use scripts.

How to create a recovery catalog
1. Connect to the catalog database and create a tablespace for the catalog:

SQL> CRETAE TABLESPACE rman_ts

DATAFILE ‘/DB01/ORADATA/rman_ts_data.dbf’

SIZE 20M DEFAULT STORAGE

(INITIAL 100K NEXT 100K PCTINCREASE 0);

2. Create a user and schema for recovery catalog:

SQL> CREATE USER rman_db01 IDENTIFIED BY rman_db01

DEFAULT TABLESPACE rman_ts

QUOTA UNLIMITED ON rman_ts;

SQL> GRANT recovery_catalog_owner TO rman_db1;

SQL> GRANT CONNECT, RESOURCE TO rman_db1;

3. Login to the OS and issue the RMAN command to invoke RMAN. Create the catalog. Use the LOG option  to enable RMAN to output messages and commands to a file.

RMAN CATALOG rman_db1/rman_db1@catdb log=catalog.log

CREATE CATALOG TABLESPACE rman_ts;

EXIT;

Check the catalog.log for errors. If there are errors, drop all objects ander the catalog owner and re-create them beginning.
4. Connect to the target database. You must login as a SYSDBA user.

RMAN target sys/oracle@db01;

RMAN> CONNECT CATALOG rman_db01/rman_db01@catdb

5. Register the target database in the catalog. If the target database is not registered in the recovery catalog, the catalog cannot be used to store information about the database. Recovery manager uses the internal database identifier (DBID), which is calculated when the database is first created, as a unique database identifier. If you attempt to register a new database that has been created by copying an existing database and then changing the DB_NAME, the register will fail. You can avoid this by issuing the DUPLICATE command, which copies the database from backups and generates a new DBID.

6. To backup a copied database, create a new recovery catalog owner, and create the catalog in the new account. RMAN creates rows in the recovery catalog that contain information about the target database. RMAN copies all pertinent data about the target database from the control file into the recovery catalog.

RMAN> REGISTER DATABASE;

RMAN recovery catalog maintenance

Resynchronizing the recovery catalog

Resynchronization of the recovery catalog ensures that the metadata is current with the target control file. Resynchronization can be full or partial. In a partial resynchronization RMAN reads the current controlfile to update changed data, but does not resynchronize metadata about the database physical schema – datafiles, tablespaces, etc. In a full resync, RMAN updates all changed records, including schema records. RMAN automatically  detects when it needs a resynchronization and performs it as needed. You can also force it by issuing RESYNC CATALOG.

To ensure that the catalog remains current, run the RESYNC CATALOG command periodically, at least once per every CONTROL_FILE_RECORD_KEEP_TIME. Because the control file employs a circular reuse system, backup and copy records eventually get overwritten. Resynchronizing the catalog ensures that these records are stored in the catalog and are not lost.

Any structural changes to the database cause the control file and recovery catalog become out of synch. The catalog will be synchronized automatically when a backup or copy command is issued in connection to the catalog. However, this synchronization can cause a delay in the backup operation. 

The RESYNC CATALOG command updates the following records:

· Log history

· Archived redo log

· Backup history

· Physical schema

Resetting a database incarnation

Use the RESET DATABASE command:

· When the database is opened with the RESETLOGS option

· To direct RMAN to create a new database incarnation record

· To distinguish between opening with RESETLOGS and an accidental restore operation of an old control file

Using the RESET DATABASE command

An incarnation of a database is a number used to identify a version of the database prior to the log sequence number being reset to zero. This prevents archived and online redo logs from being applied to an incorrect incarnation of the database. The RESET DATABASE command is being used by RMAN to store database incarnation information in the recovery catalog. All subsequent backups and log archives are associated with the new database incarnation. 

If the target database is recovered to a point in the past, the database must be opened with the RESETLOGS option. In this case, RMAN cannot use the recovery catalog again until a RESET DATABASE command is issued. This enables RMAN to distinguish between a RESETLOGS and an accidental restore operation of an old controlfile.

Example:

RMAN> RESET DATABASE;

Reset database to incarnation key command

The RESET DATABASE TO INCARNATION <IDENTIFIER> command is used to undo the effects of a RESETLOGS operation by restoring backups of a prior incarnation of the database. You must specify the primary key of the record for the database incarnation to which you return.

RMAN> RESET DATABASE TO INCARNATION <>;

The identifier must be obtained by the LIST INCARNATION OF DATABASE command.

Example.

RMAN> LIST INCARNATION OF DATABASE;

RMAN> RESET DATABASE TO INCARNATION 421;

Recovery catalog reporting

These commands analyze and list information contained inside the recovery catalog.

REPORT command

Analyzes various aspects of backup, copy, restore and recovery operations.

LIST command

Lists backup sets, file copies and archived logs which are stored in the recovery catalog.

RMAN recovery views 

In addition to REPORT and LIST commands, you can use SQL commands to query the data dictionary and dynamic views that are created when the recovery catalog is created. 

Example 1. To determine which databases are currently registered in the recovery catalog:

SQL> SELECT * FROM rc_database;

Example 2. To determine which tablespaces are currently stored in the recovery catalog for the target database:

SQL> SELECT db_key, DBINC_KEY, DB_NAME, TS#, NAME, CREATEION_CHANGE# CHANGE#, CREATION_TIME CRE_DATE

FROM rc_tablespace;

Example 3. To determine which scrpts are currently stored in the recovery catalog for the target database:

SQL> SELECT * FROM rc_stored_script;

Stored scripts

A recovery script is a set of commands that:

- Specify frequently used backup, recover and restore operation.

- Are created using the CREATE SCRIPT command

- Are stored in the recovery catalog

- Can be called only by using the RUN command

- Enable you to plan, develop and test a set of commands for backing up, restoring and recovering the database.

- Minimize the potential for operator errors

Storing and viewing scripts

As an example, a script named level0backup can be created and stored in the recovery catalog to make an incremental level 0 backup. Storing the script in the recovery catalog enables you to make an incremental level 0 backup. Storing the script in the recovery catalog enables any dba using RMAN to access the scripts. 

You can display a list of stored scripts by querying the RC_STORED_SCRIPT view.

You can also query the RC_START_SCRIPT_LINE view to list the text of a specified stored script or you can use the PRINT_SCRIPT command;

Script examples

RMAN> CREATE SCRIPT level0backup {

BACKUP

INCREMENTAL LEVEL 0

FROMAT ‘/u01/DB01/backup/%d_s%_%p’

FILESPERSET 5

(DATABASE INCLUDE CURRENT CONTROLFILE);

SQL ‘ALTER DATABASE ARCHIVE LOG CURRENT’;

}

RMAN> RUN {EXECUTE SCRIPT Level0Backup; }

Managing scripts

Use REPLACE SCRIPT to rewrite a script

RMAN> REPLACE SCRIPT level0Backup {

…

FILESPERSET 3

… 

}

Use DELETE SCRIPT Level0Backup;

Use PRINT SCRIPT to display a script

RMAN> PRINT SCRIPT Level0Backup;

Backup of recovery catalog

· Whole database backup of the database containing the recovery catalog

· Tablespace backup of the tablespace containing the recovery catalog

· Export – if the catalog is not very large, you can export the database at regular intervals, if the catalog is large – only export the schema containing the catalog

Recovering the recovery catalog

The strategy for recovering a recovery catalog would depend on the nature of the failure and the backup in place. If the database containing the recovery catalog is damaged, and has to be rebui;t, then you should consider the following recovery options:

· You can create a database from a previous backup of the recovery database

· You can decide to locate the catalog in another database. In that database, create a user and grant the user the RECOVERY_CATALOG_OWNER privilege. You can import the data from the export of the previous catalog owner into the schema of the newly created user.

· You can create a new database and import the entire database from an export of the recovery catalog database.

When the recovery catalog has been rebuilt, you should resyncronize the catalog with the controlfile of the target database immediately. During resynchronization, RMAN may add records for files that nolonger exist, because files being recataloged are not verified. Remove such files by issuing the CHANGE … UNCATALOG command.

Transporting data between databases
Overview

The export utility provides a simple way for you to transfer data between Oracle databases, even if they reside on platforms with different hardware and softeare configurations. The export utility can provide a logical backup of:

· Database objects

· A tablespace

· An entire database

An import utility is used to read a valid export file for moving data into a database. Redo log history cannot be applied to objects that are imported from an export file, therefore data loss can occur, but can be minimized. 

The DBA can use import/export utilities to complement normal OS backups by using them to:

· Create a historical archive of a database object or an entire database. For example, when a schema is modified to support changing business requirements. 

· Save table definitions in a binary file. This may be useful for creating and maintaining a baseline of a given schema structure. 

· Move data from one Oracle database version to another. 

You use these utilities to protect against:

· User errors

· A table that became logically corrupted

· An incorrect batch job or other DML statement that has affected only  a subset of the database.

You use these utilities to recover:

· A logical database to a point different from the rest of the physical database when multiple logical databases exist in separate tablespaces or one physical database

· A tablespace in a very large database when tablespace point-in-time recovery is more efficient than restoring the whole database from a backup and rolling it forward.  

Methods to run the export utility

· An interactive dialog

· The command line interface

· Parameter files

· OEM

To use export, you must have the CREATE SESSION privilege. To export tables owned by another user, you must have the EXP_FULL_DATABASE role enabled. This role is granted to all DBAs. 

Export modes

	Table mode
	User mode
	Tablespace mode
	Full database mode

	Table definitions

Table data (all/selected rows)

Owner’s table grants

Owner’s table indexes

Table constraints
	Table definitions

Tables data

Owner’s grants

Owner’s indexes

Tables constraints
	Table definitions

Grants 

Indexes

Table constraints

Triggers
	Table definitions

Tables data

Grants

Indexes

Tables constraints




Table mode

Table mode exports specified tables in the user’s schema, rather than exporting all tables. A privileged user can export specified tables owned by other users.

User mode

User mode exports all objects for a user’s schema. Privileged users can export all objects in the schemas of a specified set of users. This mode can be used to complement a full database export. 

Tablespace mode

You can use transportable tablespaces to move a subset of an Oracle database and plug it into another Oracle database, essentially moving tablespaces between databases. 

Moving data by the way of transportable tablespaces can be much faster and easier than import/export of the same data, because transporting a tablespace only requires the copying of data files and integrating the tablespace structural information. You can also use transportable tablespaces to move index data, thereby avoiding the index rebuilds you would have to perform when importing table data. 

Full database mode

Full database mode exports all database objects, except those in the SYS schema. Only privileged users can export in  this mode.

Command line import / export syntax

Create an export file that includes the tables EMPLOYEES and DEPARTMENTS from HR schema including rows:

Exp hr/hr TABLES=(employees, departments) rows=y file=exp1.dmp

Create an export file that includes all definitions of objects belonging to the tablespace ts_emp

Exp system/manager TRANSPORT_TABLESPACE=y TABLESPACE=(ts_emp) log=ts_emp.log

Create a fast export file that includes all objects in HR schema

Exp system/manager OWNER=hr direct=y file=expdat.dmp

Create an export file that includes all definitions and data modified in the database since the last cumulative or complete export

Exp system/manager FULL=Y inctype=cumulative file=expcum1.dmp

Direct path export concepts

By using direct path you can extract data much faster. When you specify DIRECT=Y, the export utility reads data directly from disk instead of going through data layer. 

· Direct mode of export can be set by specifying the DIRECT=Y parameter

· Does not compete with other resources on the instance

· If in direct read mode, it reads database blocks into a private area used by the session.   

· Rows are transferred directly into the Two-Task Common (TTC) buffer for transport

· The data in the TTC buffer is in the format that the Export utility expects

Specifying direct export

Exp userid=hr/hr full=y direct=y

Before direct path export can be used you must make sure that catexp.sql has been run. It is in the $HOME/rdbms/admin/. 

Exporting with a parameter file 
An example of a parameter file:

USERID=hr/hr

TABLES=(employees,departments)

FILE=exp_one.dmp

DIRECT=y

To execute the parameter from the OS exp_par.txt:

$ exp parfile=exp_param.txt

Direct path export restrictions
· The direct path export cannot be invoked interactively

· Client side and server side character sets must be the same

· The BUFFER parameter has no effect

· You cannot use the direct path option to export rows containing LOB, BFILE, REF or object types.

Import utility

The import utility reads the object definitions and table data from an export dump file. It inserts the data objects into an Oracle database. Import functionality includes:

· Creating table definitions since the table definitions are stored in the Export file. Choosing to import table definitions without rows will create just the table definitions.

· Extracting data from a valid export file by using the TABLE, USER, TABLESPACE or FULL import modes.

· Importing data from a complete or cumulative export file

· Recovering from user failure errors where a table is accidentally dropped or truncated

Import methods

Table, user, tablespace, full database

Command line import

Imp hr/hr TABLES=(employees,departments) rows=y file=exp1.dmp

Imp system/manager FROMUSER=hr file=exp2.dmp

Imp system/manager TRANSPORT_TABLESPACE=y TABLESPACES=ts_employees
If the file parameter is not specified, Import looks for the default expdat.dmp

Import parameters

IGNORE – ignore errors related to already existing objects

INCTYPE – type of incremental import – SYSTEM or RESTORE

PARFILE – parameter file

DESTROY – specifies whether or not the existing data file making up the database should be reused

FROMUSER – a list of schemas containing objects to import

TOUSER – specifies a list of usernames whose schemas will be imported

INDEXFILE – specifies a file to receive index creation

TRANSPORT_TABLESPACE – instructs import to import transportable tablespace metadata from an export file

TABLESPACES – list of tablespaces to be transported

DATAFILES – list of datafiles to be transported into the database

TTS_OWNERS – list the users who own the data in the transportable tablespace set.

Invoking import as SYSDBA

You should only invoke import as SYSDBA only if requested by Oracle support or when importing a transportable tablespaces. 

Imp \’hr/hr@db01 as sysdba\’ 

Import process sequence

1. New tables are created

2. Data is imported

3. Indexes are built

4. Triggers are imported

5. Integrity constraints are enabled for new tables

6. Any bitmap, functional and/or domain indexes are built

Import National Language Support considerations

The export file identifies the character encoding scheme used for the character data in the file

It translates data to the character set of its host system

A multibyte character set export file must be imported into a system that has the same characteristics

Examples

Converting from a 7-bit ASCII character set such as American English, to an 8-bit character set such as Danish, no conversion is needed because all characters have an equivalent in the Danish alphabet. When converting from Danish into English, though, the characters not found in English will converted with “?” instead of the unknown Danish characters. 

Loading data into a database

Several methods are available for loading data into tables in an Oracle database. Of the methods available Direct load insert and SQL*Loader are discussed here.

SQL*Loader

SQL*Loader loads data from external files into tables of an Oracle database. It has a powerful data parsing engine that puts little limitation on the format of the data in the data file.

Direct-Load insert

Direct load insert can be used to copy data from one table to another table within the same database. It speeds up the insert operation, bypassing the buffer cache and writing data directly into the data files.

Direct-Load insert

Direct-Load insert (serial or parallel) can only support the INSERT … SELECT syntax of an insert, not the INSERT … values syntax. The parallelism for INSERT … SELECT is determined from either parallel hints or parallel table definition. Oracle9i provides syntax extensions that extend the scope of the INSERT … SELECT statement, so that you can insert multiple tables as part of a single DML statement.

Serial direct-load INSERT into a nonpartitioned, partitioned or subpartitioned table

Data is inserted beyond the current watermark of the table segment of each partition segment. When a statement executes, the high watermark is updated to the new value. When loading a partitioned or subparttioned table, SQL*Loader partitions the rows the rows and maintains indexes 9which can also be partitioned). A direct path load of a partitioned table can be quite resource-intensive. 

Parallel direct-load INSERT into a partitioned table
Each parallel execution server allocates a new temporary segment and inserts data into the temporary segment. When a statement executes, the parallel execution coordinator merges the new temporary segments into the primary table segment.

Serial Direct-Load inserts

INSERT /*+ APPEND */ INTO emp 

NOLOGGING

SELECT * FROM t_employees;

COMMIT;

Each parallel execution server is assigned one or more partitions, with no more than one process working per partition. The parallel execution server inserts data beyond the current HWM of the partition segments assigned to it. 

When a statement executes the HWM of each partition segment is updated by the parallel execution coordinator to the new value, making the data visible to others.

Parallel Direct-Load inserts
ALTER SESSION 

ENABLE PARALLEL DML;

INSERT /*+ PARALLEL(hr.employees,2) */

INTO hr.employees

NOLOGGING

SELECT * FROM hr.old_employees;

When parallel direct-load inserts are made, the Oracle server uses several processes, known as parallel query slaves, to insert data into the table. Temporary segment are allocated to store the data inserted by the process. When transaction commits, the extents in these individual segments become a part of the table in which the records are inserted.  The ALTER SESSION ENABLE PARALLEL DML must be executed in the beginning of the transaction.

An object that is modified using parallel direct-load insert cannot be queried or modified again within the same transaction.

SQL*Loader features
SQL*Loader has the following features

· Can use one or more files

· Several input records can be combined into one logical record for loading

· Input fields can be fixed or variable length

· Input data can be in any format

· Data can be loaded from different types of media – disk, tape or named pipes

· Data can be loaded into several tables in one time

· Options are available to replace or to append to the existing data in the tables

· SQL functions can be applied on the input data before the row is stored in the database

· Columns can be autogenerated based on rules. For example, a sequential key can be generated and stored in a column.

· Data can be loaded directly into the table, bypassing the buffer cache

Using SQL*Loader

$ sqlldr hr/hr \

· control=case.ctl |

· > log=case1.log direct=y

Comparing conventional and direct path loads

	Conventional SQL*Loader
	Direct path load

	Uses COMMITs to make changes permanent
	Uses data slaves

	Redo log entries are always generated
	Generates redo only under specific conditions

	Enforces all constraints
	Enforces only primary key, unique and NOT NULL

	INSERT triggers fire
	INSERT triggers do not fire

	Can load into clustered tables
	Cannot load into clustered tables

	Other users can make changes to tables
	Other users cannot make changes to tables


Multiple direct-path load

Multiple SQL*Loader sessions improve the performance of a direct path load. There are three models of concurrency that can be used to minimize the time required for data loading:

- Parallel conventional path loads

- Intersegment concurrency with direct path load method

- Intrasegment concurrency with direct path load method

Concurrent conventional path

If triggers or integrity constraints pose a problem, but faster loading is desired, you should consider using concurrent conventional path loads. Use multiple load sessions executing concurrently on a multiple CPU system. Split the input datafiles into separate files on logical record boundaries, then load each such input datafile with a conventional path load session.

Intersegment concurrency

Intersegment concurrency can be sued for concurrent loading of different objects. This technique can be applied for concurrent direct path loading of different tables, or to concurrent direct path loading of different partitions of the same table.

Intrasegment concurrency

A parallel direct path load allows multiple direct path load sessions to concurrently load the data into the same table, or into the same partition of a subpartitioned table allowing intrasegment parallelism.

The SQL*Loader control file

The SQL*Loader control file is a text file that contains data definition DDL instructions. 

· Where SQL*Loader finds data to load

· How SQL*Loader expects the data to be formatted

· How SQL*Loader configures memory, rejecting records, interrupted load handling, etc. – as it loads the data.

· How SQL*Loader manipulates the data being loaded

Although not precisely defined, the control file can be said to have 3 sections.

The first section contains session-wide information:

1. Global section such as bindsize, rows, records to skip, and so on

2. INFILE clauses to specify where the input data is located

3. How the data is to be loaded

The second section consists of one or more INTO TABLE blocks. Each of these blocks contains information about the table into which the data is to be loaded, such as the table name and columns in the table.

The third section is optional, and, if present, contains input data

An example of SQL*Loader control file

· This is a sample control file

LOAD DATA

INFILE ‘SAMPLE.DAT’

BADFILE ‘sample.bad’

DISCARDFILE ‘sample.dsc’

APPEND

INTO TABLE emp

WHEN (57) =  ‘.’

TRAILING NULLCOLS

(hiredate SYSDATE,

Deptno POSITION(1:2) INTEGER EXTERNAL(3)

NULLIF deptno=BLANKS,

Job POSITION(7:14) CHAR TERMINATED BY WHITESPACE

NULLIF job=BLANKS “UPPER(:job)”,

Mrg POSITION(28:31) INTEGER EXTERNAL

TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,

Ename POSITION(34:1) CHAR

TERMINATED BY WHITESPACE “UPPER(:ename) “,

Empno POSITION(45) INTEGER EXTERNAL

TERMINATED BY WHITESPACE,

Sal POSTION(51) CHAR TERMINATED BY WHITESPACE

“TO_NUMBER(:sal,’$99,999.99’)”,

Comm. INTEGER EXTERNAL ENCLOSED BY ‘(‘ AND ‘%’

“:comm. * 100”

)

Explanation

· The LOAD DATA statement tells SQL*Loader that this is the beginning of a new data load. If you were continuing a load that has been interrupted, you would issue CONTINUE LOAD DATA statement.

· The INFILE keyword specifies the name of a datafile containing data that you would want to load.

· The BADFILE keyword specifies the name of a file into which rejected records are placed

· The DISCARDFILE keyword specifies the name of a file into which discarded records are placed

· The APPEND keyword specifies that you are inserting data into an already exiting data. To load data into a table that is empty, issue INSERT.

· The INTO TABLE specifies tables, fields and datatypes. It defines the relationship between records in the datafile and tables in the database.

· The WHEN clause specifies one or more field conditions, which each record must match before SQL*Loader will load the data. In this example SQL*Loader will only the record if the 57th character is a decimal point. That decimal point delimits dollars and cents in the filed and causes records to be rejected if SAL has no value.

· The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned columns that are not present in the record as null columns.

· The remainder of the control file contains the filed list, which provides information about column formats in the table being loaded.

Datafile formats
A file is in fixed format when all records in a datafile are of the same length. Although this format is the least flexible, it results in better performance than variable or stream format. Fixed-record format is also simple to specify:

INFILE <datafile_name> “fix n”

This example specifies that SQL*Loader should interpret the particular datafile as being in fixed-record format where every record is n bytes long.

The example shows a control file that specifies a fixed record format datafile. The datafile contains four physical records. The first record is [0001, abcd] which is exactly nine bytes long and the carriage return is the tenth byte.

Load data

Infile ‘example.dat’ “fix 10”

Into table example

Fields terminated by ‘,’

(col1, col2)

Example.dat:

0001,abcd

0002,fghi

0003,klmn

A variable record format

A file is in variable-record format when the length of each record in a character filed is included at the beginning of each record in the datafile. This format provides  some added flexibility over the fixed record format and a performance advantage over the stream record format. For example, you can specify a datafile that is to be interpreted as being in variable record format:

INFILE “datafile_name” “var n”

In this example, n specifies the number of bytes in the record length filed. If n is not specified, Oracle assumes a length of 5. Specifying n larger than 40 will result in an error. 

The following example shows a control file specification that tells SQL*Loader to look for data in the datafile example.dat and to expect variable- record format where the record length fields are 3 bytes long. The example.dat datafile consists of 3 physical records. The first is 009 (9) bytes long, the second is 010 bytes long (including a 1 character newline), and the third is 012 bytes long. This example also assumes a single-byte character set for the datafile.

Load data 

Infile ‘example.dat’ “var 3”

Into table example

Fileds terminated by ‘,’ optionally enclosed by ‘”’

(col1 char(5),

Col2 char(7))

Example.dat:

009hello,cd,

010world,im,

012my,name is,

Stream-recorded format 

A file is in stream recorded format when the records are not specified by size; instead SQL*Loader forms records by scanning for the record terminator. Stream record format is the most flexible format, but there can be a negative inpact on performance. The specification on a datafile to be interpreted as being in stream-record format:

INFILE <datafile_name> [“str terminator_string”]

When the terminator_string contains special (nonprintable) characters, it should be specified as an X/ hex_string’. However, some nonprintable characters can be specifed as (‘char_string’) by using a backslash.

\n – linefeed

\t – horizontal tab

\f - formfeed

\v – carriage return 

The following example shows  loading data in stream record format where the terminator string is specified using a character string ‘|\n’. The use of the backslash character allows the character string to specify the nonprintable character.

Load data

Infile ‘example.dat’ “str ‘|\n’”

Into table example

Fileds terminated by ‘,’ optionally enclosed by ‘”’

(col1 char(5),

Col2 char(7))

Example.dat:

Hello,world,|

James,bond,|

SQL*Loader Logical records

SQL*loader organizes the input data into physical records, according to the specified record format. By default a physical record is a logical record, but for added flexibility, SQL*Loader can be instructed to combine a number of physical records into  a logical record. SQL*Loader can do it in 2 ways:

1. Combine a fixed number of physical records to form each logical record

2. Combine physical records into logical records while a certain condition is true

Using CONCATENATE to assemble logical records

CONCATENATE is used when SQL*Loader should always add the same number of physical records to form one logical record. The following is an example of using CONCATENATE in which integer specifies the number of physical records to combine:

CONCATENATE integer

Using CONTINUEIF to assemble logical records

CONTINUEIF must be used if the number of physical records to be combined varies. The keyword CONTINUEIF is followed by a condition that is evaluated for each physical record as it is read. For example, two records might be combined if there were a pound sign in character position 80 for the first record. If any other character were there, the second record would not be added to the first.

Handling discarded or rejected records

The bad file

SQL*Loader rejects

Records are rejected by SQL*Loader when the input format is invalid. For example, if the second enclosure delimiter is missing, or if a delimiter field exceeds its maximum length, SQL*Loader rejects the record. Rejected records are placed in the bad file.

Oracle rejects

After a record is accepted for processing by SQL*Loader, a row is sent to Oracle for isertion. If Oracle determines that the row is valid, then the row is inserted into the database. If not, the record is rejected, and SQL*Loader puts it in the bad file. The row may be rejected for example, because a key is not unique, because a required filed is NULL, or because the field contains invalid data for the Oracle datatype.

The discard file

As SQL*Loader executes, it may create a file called the discard file. The file is created only when it is needed, and only if you have specified that a discard file should be enabled. The discard file contains records that were filtered out of the load because they did not match any record-selection criteria specified in the control file. The discard file therefore contains records that were not inserted into any table in the database. You can specify the maximum number of such records that the discard file can accept.

Contents of the log file

The header information contains:

· Date of the run

· Software version number

The Global information section contains:

· Names of all input/output files

· Echo of command-line arguments

· Continuation character specification

The table Information Section provides the following entries for each table loaded:

· Table name

· Load conditions, if any. That is, whether all records wee loaded or only those meeting WHEN-clause criteria

· INSERT, APPEND, or REPLACE specification

· The following column information: 

· If found in datafile, the position, length, datatype and delimiter

· If specified, RECNUM, SEUENCE, CONSTANT or EXPRESSION

· If specified, DEFAULTIF or NULLIF

If the SQL*Loader control file any directives for loading datetime/interval datatypes, then the log file contains the ketyword DATETIME or INTERVAL under the datatype heading. If applicable, the keywrd DATETIME or INTERVAL is followed by the corresponding mask. 

The datafile Information section appears only for datafiles with data errors and provides the following entries:

· SQL*Loader and oracle data record errors

· Records discarded

The Table Load information section provides the following entries for each table that was loaded:

· Number of rows loaded

· Number of rows that qualified for loading but were rejected due to data errors

· Number of rows that were discarded because they met no WHEN-clause tests

· Number of rows whose relevant fields were all NULL

The Summary statistics section displatys the following data:

· Amount of space used

·     For bind array (what was actually used based on BINDSIZE specified)

·     For other overhead (always required, independent of BINDSIZE)

· Cumulative load statistics. That is for all datafiles, the number of records that were skipped, read or rejected.

The following statistics are logged when a table is loaded:

· Direct-path load of a partitioned table reports per partition statistics

· Conventional-path load cannot report per-partition statistics.

If media recovery is not enabled, the load is not logged. That is, if media recovery is disabled the request for a logged operation is overridden.

SQL*Loader usage guidelines

· Use a parameter file to specify commonly used command line options. For example, if loading into a data warehouse every week, all options except names of the files may be the same

· Separating the control file and data file permits reusing control files for several load sessions.

· Pre-allocating space based on the expected data volume prevents dynamic allocation of extents during the load and improves the speed of the load

· When direct loads are used, temporary segments are used to generate indexes for the new data. These indexes are merged with the existing indexes at the end of the load. By sorting the input data on the keys in the largest index at the end of the load. By sorting the input data on the keys in the largest index, use of sort space can be minimized.

· With parallel direct loads, you can specify the location of temporary segments used for inserting data.  For each load session, specify a different database file to achieve maximum performance.

- 

